Custom Numeric Types
Introduction to Custom Numeric Types
Creating custom numeric types allows developers to design specialized mathematical objects with unique behaviors and representations.
Defining a Custom Numeric Class
class RationalNumber:
def __init__(self, numerator, denominator):
## Ensure denominator is not zero
if denominator == 0:
raise ValueError("Denominator cannot be zero")
## Simplify fraction
def gcd(a, b):
while b:
a, b = b, a % b
return a
common = gcd(abs(numerator), abs(denominator))
self.numerator = numerator // common
self.denominator = denominator // common
## Handle negative signs
if self.denominator < 0:
self.numerator = -self.numerator
self.denominator = abs(self.denominator)
Arithmetic Operations for Custom Numeric Types
class RationalNumber:
def __add__(self, other):
new_numerator = (self.numerator * other.denominator +
other.numerator * self.denominator)
new_denominator = self.denominator * other.denominator
return RationalNumber(new_numerator, new_denominator)
def __sub__(self, other):
new_numerator = (self.numerator * other.denominator -
other.numerator * self.denominator)
new_denominator = self.denominator * other.denominator
return RationalNumber(new_numerator, new_denominator)
def __mul__(self, other):
new_numerator = self.numerator * other.numerator
new_denominator = self.denominator * other.denominator
return RationalNumber(new_numerator, new_denominator)
Comparison and Representation Methods
class RationalNumber:
def __eq__(self, other):
return (self.numerator == other.numerator and
self.denominator == other.denominator)
def __lt__(self, other):
return (self.numerator * other.denominator <
other.numerator * self.denominator)
def __str__(self):
return f"{self.numerator}/{self.denominator}"
def __repr__(self):
return f"RationalNumber({self.numerator}, {self.denominator})"
Custom Numeric Type Creation Flow
graph TD
A[Define Class] --> B[Initialize Attributes]
B --> C{Implement Methods}
C --> D[Arithmetic Operations]
C --> E[Comparison Methods]
C --> F[Representation Methods]
D,E,F --> G[Create Instances]
G --> H[Perform Operations]
Type Conversion and Numeric Protocols
class RationalNumber:
def __float__(self):
return self.numerator / self.denominator
def __int__(self):
return self.numerator // self.denominator
Advanced Features
class RationalNumber:
def __pow__(self, power):
if isinstance(power, int):
new_numerator = self.numerator ** abs(power)
new_denominator = self.denominator ** abs(power)
return RationalNumber(new_numerator, new_denominator)
raise TypeError("Power must be an integer")
Usage Example
## Creating and using custom numeric type
r1 = RationalNumber(3, 4)
r2 = RationalNumber(1, 2)
print(r1 + r2) ## Addition
print(r1 * r2) ## Multiplication
print(float(r1)) ## Type conversion
Numeric Type Characteristics
Feature |
Description |
Initialization |
Custom constructor |
Arithmetic |
Overloaded operations |
Comparison |
Custom comparison logic |
Conversion |
Support for type casting |
Best Practices
- Implement comprehensive method set
- Ensure mathematical consistency
- Handle edge cases
- Provide clear error messages
LabEx Recommendation
LabEx suggests exploring custom numeric types to develop more specialized mathematical libraries and solve complex computational problems.
- Optimize initialization
- Cache intermediate results
- Use efficient algorithms
- Minimize computational complexity