Practical Applications
Real-World Wrapper Scenarios
Function wrappers provide powerful solutions for various programming challenges, enabling developers to enhance functionality without modifying original code.
import time
import functools
def performance_tracker(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
execution_time = time.time() - start_time
print(f"Function {func.__name__} took {execution_time:.4f} seconds")
return result
return wrapper
@performance_tracker
def complex_calculation(n):
return sum(range(n))
Wrapper Application Categories
Category |
Purpose |
Example Use |
Logging |
Track function calls |
Debugging |
Caching |
Store function results |
Performance optimization |
Authentication |
Control access |
Security |
Retry Mechanism |
Handle transient failures |
Network operations |
Retry Mechanism Wrapper
def retry(max_attempts=3, delay=1):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
attempts = 0
while attempts < max_attempts:
try:
return func(*args, **kwargs)
except Exception as e:
attempts += 1
if attempts == max_attempts:
raise
time.sleep(delay)
return wrapper
return decorator
@retry(max_attempts=3)
def unstable_network_request():
## Simulated network request
pass
Wrapper Interaction Flow
graph TD
A[Original Function] --> B{Wrapper Logic}
B --> C[Pre-Processing]
C --> D[Function Execution]
D --> E[Post-Processing]
E --> F[Return Result]
Advanced Wrapper Techniques
- Dependency Injection
- Memoization
- Rate Limiting
- Validation
- Telemetry
Caching Wrapper Example
def memoize(func):
cache = {}
@functools.wraps(func)
def wrapper(*args):
if args not in cache:
cache[args] = func(*args)
return cache[args]
return wrapper
@memoize
def fibonacci(n):
if n < 2:
return n
return fibonacci(n-1) + fibonacci(n-2)
Practical Considerations
- Minimal performance overhead
- Clean, readable code
- Separation of concerns
- Easy maintenance
- Flexible configuration
By implementing these wrapper techniques, LabEx developers can create more robust, efficient, and maintainable Python applications with enhanced functionality and cleaner code structures.