Advanced Argument Techniques
Complex Dictionary Argument Handling
Type Hinting with Dictionaries
from typing import Dict, Any, Optional
def process_config(
settings: Dict[str, Any],
override: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
config = settings.copy()
if override:
config.update(override)
return config
default_settings = {'debug': False, 'timeout': 30}
custom_settings = {'debug': True}
result = process_config(default_settings, custom_settings)
def validate_user_data(user_data: Dict[str, Any]) -> Dict[str, Any]:
required_fields = ['username', 'email']
## Check for required fields
for field in required_fields:
if field not in user_data:
raise ValueError(f"Missing required field: {field}")
## Transform and sanitize data
return {
'username': user_data['username'].lower(),
'email': user_data['email'].strip(),
'is_active': user_data.get('is_active', True)
}
try:
user = validate_user_data({
'username': 'JohnDoe',
'email': ' [email protected] '
})
except ValueError as e:
print(f"Validation Error: {e}")
Dynamic Argument Processing
def flexible_configuration(**kwargs):
default_config = {
'log_level': 'INFO',
'max_retries': 3,
'timeout': 60
}
## Dynamic configuration with type conversion
for key, value in kwargs.items():
if key in default_config:
## Type-safe conversion
if isinstance(default_config[key], int):
default_config[key] = int(value)
elif isinstance(default_config[key], str):
default_config[key] = str(value)
return default_config
config = flexible_configuration(
log_level='DEBUG',
max_retries='5',
timeout='120'
)
Argument Processing Strategies
Technique |
Use Case |
Complexity |
Performance |
Direct Mapping |
Simple transformations |
Low |
High |
Validation Decorators |
Complex input checks |
Medium |
Medium |
Type Conversion |
Dynamic type handling |
High |
Low |
Decorator-Based Argument Processing
def validate_dict_args(func):
def wrapper(*args, **kwargs):
## Validate dictionary arguments
for arg in args:
if isinstance(arg, dict):
if not arg:
raise ValueError("Dictionary argument cannot be empty")
return func(*args, **kwargs)
return wrapper
@validate_dict_args
def process_data(config: Dict[str, Any]):
return {k.upper(): v for k, v in config.items()}
## Usage
result = process_data({'debug': True, 'timeout': 30})
Advanced Merging Flow
graph TD
A[Input Dictionaries] --> B{Validation}
B -->|Pass| C[Type Conversion]
C --> D[Merge Strategy]
D --> E[Final Configuration]
B -->|Fail| F[Raise Exception]
Context Manager for Dictionary Arguments
class DictArgumentContext:
def __init__(self, default_dict):
self.default = default_dict
self.current = default_dict.copy()
def __enter__(self):
return self.current
def __exit__(self, exc_type, exc_val, exc_tb):
## Reset to default on exit
self.current = self.default.copy()
def configure_settings():
with DictArgumentContext({'debug': False}) as config:
config['debug'] = True
## Perform operations
## Config automatically reset
Best Practices
- Use type hints for clarity
- Implement robust validation
- Provide default values
- Handle edge cases gracefully
- Prefer immutable operations
LabEx recommends mastering these advanced techniques to write more robust and flexible Python code.