Advanced Handling Techniques
Dynamic Switch Case Implementation
Class-Based Dynamic Dispatch
class SwitchDispatcher:
def __init__(self):
self._handlers = {}
def register(self, key, handler):
self._handlers[key] = handler
def dispatch(self, key, *args, **kwargs):
handler = self._handlers.get(key, self.default_handler)
return handler(*args, **kwargs)
def default_handler(self, *args, **kwargs):
raise ValueError("No matching handler found")
## Advanced usage example
dispatcher = SwitchDispatcher()
dispatcher.register('calculate', lambda x, y: x + y)
dispatcher.register('multiply', lambda x, y: x * y)
result = dispatcher.dispatch('calculate', 5, 3)
print(result) ## Output: 8
Functional Programming Approach
Higher-Order Function Dispatch
def create_switch_handler(cases):
def switch_handler(value):
return cases.get(value, lambda: f"No handler for {value}")()
return switch_handler
## Flexible switch implementation
math_operations = {
'add': lambda x, y: x + y,
'subtract': lambda x, y: x - y,
'multiply': lambda x, y: x * y
}
math_switch = create_switch_handler(math_operations)
print(math_switch('add')(10, 5)) ## Output: 15
State Machine Implementation
stateDiagram-v2
[*] --> Idle
Idle --> Processing : Start
Processing --> Completed : Success
Processing --> Failed : Error
Completed --> [*]
Failed --> [*]
Complex State Management
class StateMachine:
def __init__(self):
self.state = 'idle'
self._transitions = {
'idle': ['processing'],
'processing': ['completed', 'failed'],
'completed': [],
'failed': []
}
def transition(self, new_state):
if new_state in self._transitions.get(self.state, []):
self.state = new_state
return True
return False
## State machine usage
machine = StateMachine()
machine.transition('processing')
machine.transition('completed')
Technique |
Complexity |
Performance |
Flexibility |
Dictionary Dispatch |
Low |
High |
Medium |
Class-Based Dispatch |
Medium |
Medium |
High |
Functional Dispatch |
Low |
High |
High |
Advanced Error Handling Strategies
Decorator-Based Error Management
def robust_dispatch(func):
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
print(f"Dispatch error: {e}")
return None
return wrapper
@robust_dispatch
def advanced_switch(value):
handlers = {
'critical': lambda: print("Critical operation"),
'warning': lambda: print("Warning triggered")
}
handlers[value]()
## Safe execution
advanced_switch('warning')
Key Takeaways for LabEx Developers
- Implement flexible dispatch mechanisms
- Use functional programming techniques
- Create robust error handling strategies
- Design extensible state management systems
- Optimize for performance and readability
By mastering these advanced techniques, LabEx learners can create sophisticated and maintainable Python applications with complex control flow management.