Permutation Importance on Breast Cancer Dataset

Machine LearningMachine LearningBeginner
Practice Now

This tutorial is from open-source community. Access the source code

Introduction

This lab demonstrates how to use permutation importance on the Wisconsin breast cancer dataset using permutation_importance function from sklearn.inspection. The Random Forest Classifier is used to classify the data and compute its accuracy on a test set. We will also show how to handle multicollinearity in the features using hierarchical clustering.

VM Tips

After the VM startup is done, click the top left corner to switch to the Notebook tab to access Jupyter Notebook for practice.

Sometimes, you may need to wait a few seconds for Jupyter Notebook to finish loading. The validation of operations cannot be automated because of limitations in Jupyter Notebook.

If you face issues during learning, feel free to ask Labby. Provide feedback after the session, and we will promptly resolve the problem for you.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL ml(("`Machine Learning`")) -.-> ml/FrameworkandSoftwareGroup(["`Framework and Software`"]) ml/FrameworkandSoftwareGroup -.-> ml/sklearn("`scikit-learn`") subgraph Lab Skills ml/sklearn -.-> lab-49244{{"`Permutation Importance on Breast Cancer Dataset`"}} end

Train a Random Forest Classifier

We first load the Wisconsin breast cancer dataset and split it into training and testing sets. We then train a Random Forest Classifier on the training set and evaluate its accuracy on the test set.

data = load_breast_cancer()
X, y = data.data, data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

clf = RandomForestClassifier(n_estimators=100, random_state=42)
clf.fit(X_train, y_train)
print("Accuracy on test data: {:.2f}".format(clf.score(X_test, y_test)))

Plot Feature Importance

We plot the tree-based feature importance and the permutation importance. The permutation importance plot shows that permuting a feature drops the accuracy by at most 0.012, which would suggest that none of the features are important. This is in contradiction with the high test accuracy computed above: some feature must be important. The permutation importance is calculated on the training set to show how much the model relies on each feature during training.

result = permutation_importance(clf, X_train, y_train, n_repeats=10, random_state=42)
perm_sorted_idx = result.importances_mean.argsort()

tree_importance_sorted_idx = np.argsort(clf.feature_importances_)
tree_indices = np.arange(0, len(clf.feature_importances_)) + 0.5

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 8))
ax1.barh(tree_indices, clf.feature_importances_[tree_importance_sorted_idx], height=0.7)
ax1.set_yticks(tree_indices)
ax1.set_yticklabels(data.feature_names[tree_importance_sorted_idx])
ax1.set_ylim((0, len(clf.feature_importances_)))
ax2.boxplot(
    result.importances[perm_sorted_idx].T,
    vert=False,
    labels=data.feature_names[perm_sorted_idx],
)
fig.tight_layout()
plt.show()

Handle Multicollinear Features

When features are collinear, permuting one feature will have little effect on the model's performance because it can get the same information from a correlated feature. One way to handle multicollinear features is by performing hierarchical clustering on the Spearman rank-order correlations, picking a threshold, and keeping a single feature from each cluster. First, we plot a heatmap of the correlated features.

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 8))
corr = spearmanr(X).correlation

## Ensure the correlation matrix is symmetric
corr = (corr + corr.T) / 2
np.fill_diagonal(corr, 1)

## We convert the correlation matrix to a distance matrix before performing
## hierarchical clustering using Ward's linkage.
distance_matrix = 1 - np.abs(corr)
dist_linkage = hierarchy.ward(squareform(distance_matrix))
dendro = hierarchy.dendrogram(
    dist_linkage, labels=data.feature_names.tolist(), ax=ax1, leaf_rotation=90
)
dendro_idx = np.arange(0, len(dendro["ivl"]))

ax2.imshow(corr[dendro["leaves"], :][:, dendro["leaves"]])
ax2.set_xticks(dendro_idx)
ax2.set_yticks(dendro_idx)
ax2.set_xticklabels(dendro["ivl"], rotation="vertical")
ax2.set_yticklabels(dendro["ivl"])
fig.tight_layout()
plt.show()

Pick a Threshold to Group Features into Clusters

We manually pick a threshold by visual inspection of the dendrogram to group our features into clusters and choose a feature from each cluster to keep, select those features from our dataset, and train a new random forest. The test accuracy of the new random forest did not change much compared to the random forest trained on the complete dataset.

cluster_ids = hierarchy.fcluster(dist_linkage, 1, criterion="distance")
cluster_id_to_feature_ids = defaultdict(list)
for idx, cluster_id in enumerate(cluster_ids):
    cluster_id_to_feature_ids[cluster_id].append(idx)
selected_features = [v[0] for v in cluster_id_to_feature_ids.values()]

X_train_sel = X_train[:, selected_features]
X_test_sel = X_test[:, selected_features]

clf_sel = RandomForestClassifier(n_estimators=100, random_state=42)
clf_sel.fit(X_train_sel, y_train)
print(
    "Accuracy on test data with features removed: {:.2f}".format(
        clf_sel.score(X_test_sel, y_test)
    )
)

Summary

This lab demonstrated how to use permutation importance to compute feature importance on the Wisconsin breast cancer dataset using a Random Forest Classifier. We showed how to handle multicollinear features using hierarchical clustering.

Other Machine Learning Tutorials you may like