Introduction
In this lab, we will compare the performance of two popular dimensionality reduction algorithms, Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), on the Iris dataset. The Iris dataset contains 3 types of Iris flowers with 4 attributes: sepal length, sepal width, petal length, and petal width.
VM Tips
After the VM startup is done, click the top left corner to switch to the Notebook tab to access Jupyter Notebook for practice.
Sometimes, you may need to wait a few seconds for Jupyter Notebook to finish loading. The validation of operations cannot be automated because of limitations in Jupyter Notebook.
If you face issues during learning, feel free to ask Labby. Provide feedback after the session, and we will promptly resolve the problem for you.
Skills Graph
%%%%{init: {'theme':'neutral'}}%%%%
flowchart RL
sklearn(("`Sklearn`")) -.-> sklearn/CoreModelsandAlgorithmsGroup(["`Core Models and Algorithms`"])
sklearn(("`Sklearn`")) -.-> sklearn/AdvancedDataAnalysisandDimensionalityReductionGroup(["`Advanced Data Analysis and Dimensionality Reduction`"])
ml(("`Machine Learning`")) -.-> ml/FrameworkandSoftwareGroup(["`Framework and Software`"])
sklearn/CoreModelsandAlgorithmsGroup -.-> sklearn/discriminant_analysis("`Discriminant Analysis`")
sklearn/AdvancedDataAnalysisandDimensionalityReductionGroup -.-> sklearn/decomposition("`Matrix Decomposition`")
ml/FrameworkandSoftwareGroup -.-> ml/sklearn("`scikit-learn`")
subgraph Lab Skills
sklearn/discriminant_analysis -.-> lab-49242{{"`Plot Pca vs Lda`"}}
sklearn/decomposition -.-> lab-49242{{"`Plot Pca vs Lda`"}}
ml/sklearn -.-> lab-49242{{"`Plot Pca vs Lda`"}}
end