Introduction
This lab is a step-by-step tutorial on how to use classification techniques on the Digits dataset using scikit-learn. In this lab, we will load the dataset, preprocess the data, split the dataset into training and testing sets, and then use two different classification techniques (K-Nearest Neighbors and Logistic Regression) to classify the digits. Finally, we will compare the accuracy of both techniques.
VM Tips
After the VM startup is done, click the top left corner to switch to the Notebook tab to access Jupyter Notebook for practice.
Sometimes, you may need to wait a few seconds for Jupyter Notebook to finish loading. The validation of operations cannot be automated because of limitations in Jupyter Notebook.
If you face issues during learning, feel free to ask Labby. Provide feedback after the session, and we will promptly resolve the problem for you.
Skills Graph
%%%%{init: {'theme':'neutral'}}%%%%
flowchart RL
sklearn(("`Sklearn`")) -.-> sklearn/CoreModelsandAlgorithmsGroup(["`Core Models and Algorithms`"])
sklearn(("`Sklearn`")) -.-> sklearn/ModelSelectionandEvaluationGroup(["`Model Selection and Evaluation`"])
ml(("`Machine Learning`")) -.-> ml/FrameworkandSoftwareGroup(["`Framework and Software`"])
sklearn/CoreModelsandAlgorithmsGroup -.-> sklearn/linear_model("`Linear Models`")
sklearn/ModelSelectionandEvaluationGroup -.-> sklearn/model_selection("`Model Selection`")
sklearn/CoreModelsandAlgorithmsGroup -.-> sklearn/neighbors("`Nearest Neighbors`")
ml/FrameworkandSoftwareGroup -.-> ml/sklearn("`scikit-learn`")
subgraph Lab Skills
sklearn/linear_model -.-> lab-49106{{"`Digits Classification using Scikit-Learn`"}}
sklearn/model_selection -.-> lab-49106{{"`Digits Classification using Scikit-Learn`"}}
sklearn/neighbors -.-> lab-49106{{"`Digits Classification using Scikit-Learn`"}}
ml/sklearn -.-> lab-49106{{"`Digits Classification using Scikit-Learn`"}}
end