Introduction
In this lab, we will use Logistic Regression Classifier to classify the first two features of Iris dataset based on their labels. We will use scikit-learn library to load and preprocess the dataset, create an instance of Logistic Regression Classifier, and fit the data. Finally, we will display the decision boundaries on the scatter plot.
VM Tips
After the VM startup is done, click the top left corner to switch to the Notebook tab to access Jupyter Notebook for practice.
Sometimes, you may need to wait a few seconds for Jupyter Notebook to finish loading. The validation of operations cannot be automated because of limitations in Jupyter Notebook.
If you face issues during learning, feel free to ask Labby. Provide feedback after the session, and we will promptly resolve the problem for you.
Skills Graph
%%%%{init: {'theme':'neutral'}}%%%%
flowchart RL
sklearn(("`Sklearn`")) -.-> sklearn/ModelSelectionandEvaluationGroup(["`Model Selection and Evaluation`"])
sklearn(("`Sklearn`")) -.-> sklearn/CoreModelsandAlgorithmsGroup(["`Core Models and Algorithms`"])
ml(("`Machine Learning`")) -.-> ml/FrameworkandSoftwareGroup(["`Framework and Software`"])
sklearn/ModelSelectionandEvaluationGroup -.-> sklearn/inspection("`Inspection`")
sklearn/CoreModelsandAlgorithmsGroup -.-> sklearn/linear_model("`Linear Models`")
ml/FrameworkandSoftwareGroup -.-> ml/sklearn("`scikit-learn`")
subgraph Lab Skills
sklearn/inspection -.-> lab-49169{{"`Logistic Regression Classifier on Iris Dataset`"}}
sklearn/linear_model -.-> lab-49169{{"`Logistic Regression Classifier on Iris Dataset`"}}
ml/sklearn -.-> lab-49169{{"`Logistic Regression Classifier on Iris Dataset`"}}
end