Advanced CSV Techniques
Large File Processing
Memory-Efficient Parsing
import csv
def process_large_csv(filename, chunk_size=1000):
with open(filename, 'r') as file:
csv_reader = csv.reader(file)
next(csv_reader) ## Skip header
chunk = []
for row in csv_reader:
chunk.append(row)
if len(chunk) >= chunk_size:
process_chunk(chunk)
chunk = []
if chunk:
process_chunk(chunk)
def process_chunk(chunk):
## Process data in memory-efficient way
for row in chunk:
## Perform operations
pass
CSV Data Manipulation Workflow
graph TD
A[Raw CSV] --> B[Data Cleaning]
B --> C[Type Conversion]
C --> D[Filtering]
D --> E[Aggregation]
E --> F[Transformed CSV]
Advanced Parsing Techniques
Handling Different Delimiters
import csv
def flexible_csv_parser(filename, delimiter=','):
with open(filename, 'r') as file:
csv_reader = csv.reader(file, delimiter=delimiter)
for row in csv_reader:
## Process rows with custom delimiter
pass
Data Validation Strategies
Validation Type |
Description |
Example |
Type Checking |
Validate data types |
Ensure age is numeric |
Range Validation |
Check value ranges |
Age between 0-120 |
Regex Validation |
Pattern matching |
Email format |
Parallel CSV Processing
import csv
import multiprocessing
def process_csv_chunk(chunk):
## Process individual chunk
processed_data = []
for row in chunk:
## Transformation logic
processed_data.append(row)
return processed_data
def parallel_csv_processing(filename):
with open(filename, 'r') as file:
csv_reader = csv.reader(file)
data = list(csv_reader)
## Split data into chunks
chunk_size = len(data) // multiprocessing.cpu_count()
chunks = [data[i:i+chunk_size] for i in range(0, len(data), chunk_size)]
## Use multiprocessing
with multiprocessing.Pool() as pool:
results = pool.map(process_csv_chunk, chunks)
return results
Advanced Encoding Handling
def robust_csv_reader(filename, encoding='utf-8'):
try:
with open(filename, 'r', encoding=encoding) as file:
csv_reader = csv.reader(file)
for row in csv_reader:
## Process row
pass
except UnicodeDecodeError:
## Fallback to alternative encoding
with open(filename, 'r', encoding='latin-1') as file:
csv_reader = csv.reader(file)
## Process rows
CSV Analysis Techniques
graph LR
A[CSV Data] --> B[Statistical Analysis]
A --> C[Data Visualization]
B --> D[Mean/Median]
B --> E[Standard Deviation]
C --> F[Matplotlib]
C --> G[Seaborn]
LabEx Learning Path
LabEx provides comprehensive environments for mastering advanced CSV processing techniques, from basic parsing to complex data transformations.
Error Handling and Logging
import logging
import csv
logging.basicConfig(level=logging.INFO)
def advanced_csv_processor(filename):
try:
with open(filename, 'r') as file:
csv_reader = csv.DictReader(file)
for row in csv_reader:
try:
## Complex processing
process_row(row)
except ValueError as e:
logging.warning(f"Invalid row: {row}. Error: {e}")
except FileNotFoundError:
logging.error(f"File {filename} not found")