Writing Multiple Rows
Introduction to Multiple Row Writing
Multiple row writing is a crucial technique in Java for handling large datasets efficiently. This section explores various methods and strategies for writing multiple data rows in different contexts.
Basic Approaches to Writing Multiple Rows
1. Using Lists and Loops
public class MultiRowWriter {
public void writeRowsToFile(List<Employee> employees) {
try (BufferedWriter writer = new BufferedWriter(new FileWriter("employees.csv"))) {
for (Employee employee : employees) {
writer.write(formatEmployeeRow(employee));
writer.newLine();
}
} catch (IOException e) {
// Error handling
}
}
}
2. Batch Processing Techniques
graph LR
A[Data Collection] --> B[Batch Preparation]
B --> C[Batch Writing]
C --> D[Commit/Flush]
Database Row Writing Strategies
JDBC Batch Insert
public void batchInsert(List<Employee> employees) {
try (Connection conn = DatabaseUtil.getConnection()) {
PreparedStatement pstmt = conn.prepareStatement(
"INSERT INTO employees (name, age, salary) VALUES (?, ?, ?)");
for (Employee emp : employees) {
pstmt.setString(1, emp.getName());
pstmt.setInt(2, emp.getAge());
pstmt.setDouble(3, emp.getSalary());
pstmt.addBatch();
}
pstmt.executeBatch();
} catch (SQLException e) {
// Error handling
}
}
Method |
Performance |
Memory Usage |
Complexity |
Simple Loop |
Low |
Low |
Simple |
Batch Processing |
High |
Moderate |
Moderate |
Stream API |
Moderate |
High |
Complex |
Advanced Multiple Row Writing Techniques
1. Stream API Approach
public void writeUsingStream(List<Employee> employees) {
employees.stream()
.map(this::formatEmployeeRow)
.forEach(System.out::println);
}
2. Parallel Processing
public void parallelRowProcessing(List<Employee> employees) {
employees.parallelStream()
.filter(emp -> emp.getSalary() > 50000)
.forEach(this::processEmployee);
}
LabEx Recommendation
At LabEx, we emphasize practical approaches to multiple row writing, focusing on performance, readability, and scalability in Java applications.
Key Considerations
- Choose the right method based on data volume
- Implement proper error handling
- Consider memory and performance constraints
- Use appropriate data structures