Recoverable Errors with Result

RustRustBeginner
Practice Now

This tutorial is from open-source community. Access the source code

Introduction

Welcome to Recoverable Errors With Result. This lab is a part of the Rust Book. You can practice your Rust skills in LabEx.

In this lab, we learn how to handle recoverable errors with the Result enum in Rust, which allows us to interpret and respond to errors without terminating the program.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL rust(("`Rust`")) -.-> rust/BasicConceptsGroup(["`Basic Concepts`"]) rust(("`Rust`")) -.-> rust/DataTypesGroup(["`Data Types`"]) rust(("`Rust`")) -.-> rust/FunctionsandClosuresGroup(["`Functions and Closures`"]) rust(("`Rust`")) -.-> rust/DataStructuresandEnumsGroup(["`Data Structures and Enums`"]) rust(("`Rust`")) -.-> rust/ErrorHandlingandDebuggingGroup(["`Error Handling and Debugging`"]) rust(("`Rust`")) -.-> rust/AdvancedTopicsGroup(["`Advanced Topics`"]) rust/BasicConceptsGroup -.-> rust/variable_declarations("`Variable Declarations`") rust/BasicConceptsGroup -.-> rust/mutable_variables("`Mutable Variables`") rust/DataTypesGroup -.-> rust/string_type("`String Type`") rust/FunctionsandClosuresGroup -.-> rust/function_syntax("`Function Syntax`") rust/FunctionsandClosuresGroup -.-> rust/expressions_statements("`Expressions and Statements`") rust/DataStructuresandEnumsGroup -.-> rust/method_syntax("`Method Syntax`") rust/ErrorHandlingandDebuggingGroup -.-> rust/panic_usage("`panic! Usage`") rust/AdvancedTopicsGroup -.-> rust/operator_overloading("`Traits for Operator Overloading`") subgraph Lab Skills rust/variable_declarations -.-> lab-100410{{"`Recoverable Errors with Result`"}} rust/mutable_variables -.-> lab-100410{{"`Recoverable Errors with Result`"}} rust/string_type -.-> lab-100410{{"`Recoverable Errors with Result`"}} rust/function_syntax -.-> lab-100410{{"`Recoverable Errors with Result`"}} rust/expressions_statements -.-> lab-100410{{"`Recoverable Errors with Result`"}} rust/method_syntax -.-> lab-100410{{"`Recoverable Errors with Result`"}} rust/panic_usage -.-> lab-100410{{"`Recoverable Errors with Result`"}} rust/operator_overloading -.-> lab-100410{{"`Recoverable Errors with Result`"}} end

Recoverable Errors with Result

Most errors aren't serious enough to require the program to stop entirely. Sometimes when a function fails it's for a reason that you can easily interpret and respond to. For example, if you try to open a file and that operation fails because the file doesn't exist, you might want to create the file instead of terminating the process.

Recall from "Handling Potential Failure with Result" that the Result enum is defined as having two variants, Ok and Err, as follows:

enum Result<T, E> {
    Ok(T),
    Err(E),
}

The T and E are generic type parameters: we'll discuss generics in more detail in Chapter 10. What you need to know right now is that T represents the type of the value that will be returned in a success case within the Ok variant, and E represents the type of the error that will be returned in a failure case within the Err variant. Because Result has these generic type parameters, we can use the Result type and the functions defined on it in many different situations where the success value and error value we want to return may differ.

Let's call a function that returns a Result value because the function could fail. In Listing 9-3 we try to open a file.

Filename: src/main.rs

use std::fs::File;

fn main() {
    let greeting_file_result = File::open("hello.txt");
}

Listing 9-3: Opening a file

The return type of File::open is a Result<T, E>. The generic parameter T has been filled in by the implementation of File::open with the type of the success value, std::fs::File, which is a file handle. The type of E used in the error value is std::io::Error. This return type means the call to File::open might succeed and return a file handle that we can read from or write to. The function call also might fail: for example, the file might not exist, or we might not have permission to access the file. The File::open function needs to have a way to tell us whether it succeeded or failed and at the same time give us either the file handle or error information. This information is exactly what the Result enum conveys.

In the case where File::open succeeds, the value in the variable greeting_file_result will be an instance of Ok that contains a file handle. In the case where it fails, the value in greeting_file_result will be an instance of Err that contains more information about the kind of error that occurred.

We need to add to the code in Listing 9-3 to take different actions depending on the value File::open returns. Listing 9-4 shows one way to handle the Result using a basic tool, the match expression that we discussed in Chapter 6.

Filename: src/main.rs

use std::fs::File;

fn main() {
    let greeting_file_result = File::open("hello.txt");

    let greeting_file = match greeting_file_result {
        Ok(file) => file,
        Err(error) => {
            panic!("Problem opening the file: {:?}", error);
        }
    };
}

Listing 9-4: Using a match expression to handle the Result variants that might be returned

Note that, like the Option enum, the Result enum and its variants have been brought into scope by the prelude, so we don't need to specify Result:: before the Ok and Err variants in the match arms.

When the result is Ok, this code will return the inner file value out of the Ok variant, and we then assign that file handle value to the variable greeting_file. After the match, we can use the file handle for reading or writing.

The other arm of the match handles the case where we get an Err value from File::open. In this example, we've chosen to call the panic! macro. If there's no file named hello.txt in our current directory and we run this code, we'll see the following output from the panic! macro:

thread 'main' panicked at 'Problem opening the file: Os { code:
 2, kind: NotFound, message: "No such file or directory" }',
src/main.rs:8:23

As usual, this output tells us exactly what has gone wrong.

Matching on Different Errors

The code in Listing 9-4 will panic! no matter why File::open failed. However, we want to take different actions for different failure reasons. If File::open failed because the file doesn't exist, we want to create the file and return the handle to the new file. If File::open failed for any other reason---for example, because we didn't have permission to open the file---we still want the code to panic! in the same way it did in Listing 9-4. For this, we add an inner match expression, shown in Listing 9-5.

Filename: src/main.rs

use std::fs::File;
use std::io::ErrorKind;

fn main() {
    let greeting_file_result = File::open("hello.txt");

    let greeting_file = match greeting_file_result {
        Ok(file) => file,
        Err(error) => match error.kind() {
            ErrorKind::NotFound => {
                match File::create("hello.txt") {
                    Ok(fc) => fc,
                    Err(e) => panic!(
                        "Problem creating the file: {:?}",
                        e
                    ),
                }
            }
            other_error => {
                panic!(
                    "Problem opening the file: {:?}",
                    other_error
                );
            }
        },
    };
}

Listing 9-5: Handling different kinds of errors in different ways

The type of the value that File::open returns inside the Err variant is io::Error, which is a struct provided by the standard library. This struct has a method kind that we can call to get an io::ErrorKind value. The enum io::ErrorKind is provided by the standard library and has variants representing the different kinds of errors that might result from an io operation. The variant we want to use is ErrorKind::NotFound, which indicates the file we're trying to open doesn't exist yet. So we match on greeting_file_result, but we also have an inner match on error.kind().

The condition we want to check in the inner match is whether the value returned by error.kind() is the NotFound variant of the ErrorKind enum. If it is, we try to create the file with File::create. However, because File::create could also fail, we need a second arm in the inner match expression. When the file can't be created, a different error message is printed. The second arm of the outer match stays the same, so the program panics on any error besides the missing file error.

Alternatives to Using match with Result<T, E>

That's a lot of match! The match expression is very useful but also very much a primitive. In Chapter 13, you'll learn about closures, which are used with many of the methods defined on Result<T, E>. These methods can be more concise than using match when handling Result<T, E> values in your code.

For example, here's another way to write the same logic as shown in Listing 9-5, this time using closures and the unwrap_or_else method:

// src/main.rs
use std::fs::File;
use std::io::ErrorKind;

fn main() {
    let greeting_file = File::open("hello.txt").unwrap_or_else(|error| {
        if error.kind() == ErrorKind::NotFound {
            File::create("hello.txt").unwrap_or_else(|error| {
                panic!("Problem creating the file: {:?}", error);
            })
        } else {
            panic!("Problem opening the file: {:?}", error);
        }
    });
}

Although this code has the same behavior as Listing 9-5, it doesn't contain any match expressions and is cleaner to read. Come back to this example after you've read Chapter 13, and look up the unwrap_or_else method in the standard library documentation. Many more of these methods can clean up huge nested match expressions when you're dealing with errors.

Shortcuts for Panic on Error: unwrap and expect

Using match works well enough, but it can be a bit verbose and doesn't always communicate intent well. The Result<T, E> type has many helper methods defined on it to do various, more specific tasks. The unwrap method is a shortcut method implemented just like the match expression we wrote in Listing 9-4. If the Result value is the Ok variant, unwrap will return the value inside the Ok. If the Result is the Err variant, unwrap will call the panic! macro for us. Here is an example of unwrap in action:

Filename: src/main.rs

use std::fs::File;

fn main() {
    let greeting_file = File::open("hello.txt").unwrap();
}

If we run this code without a hello.txt file, we'll see an error message from the panic! call that the unwrap method makes:

thread 'main' panicked at 'called `Result::unwrap()` on an `Err` value: Os {
code: 2, kind: NotFound, message: "No such file or directory" }',
src/main.rs:4:49

Similarly, the expect method lets us also choose the panic! error message. Using expect instead of unwrap and providing good error messages can convey your intent and make tracking down the source of a panic easier. The syntax of expect looks like this:

Filename: src/main.rs

use std::fs::File;

fn main() {
    let greeting_file = File::open("hello.txt")
        .expect("hello.txt should be included in this project");
}

We use expect in the same way as unwrap: to return the file handle or call the panic! macro. The error message used by expect in its call to panic! will be the parameter that we pass to expect, rather than the default panic! message that unwrap uses. Here's what it looks like:

thread 'main' panicked at 'hello.txt should be included in this project: Os {
code: 2, kind: NotFound, message: "No such file or directory" }',
src/main.rs:5:10

In production-quality code, most Rustaceans choose expect rather than unwrap and give more context about why the operation is expected to always succeed. That way, if your assumptions are ever proven wrong, you have more information to use in debugging.

Propagating Errors

When a function's implementation calls something that might fail, instead of handling the error within the function itself you can return the error to the calling code so that it can decide what to do. This is known as propagating the error and gives more control to the calling code, where there might be more information or logic that dictates how the error should be handled than what you have available in the context of your code.

For example, Listing 9-6 shows a function that reads a username from a file. If the file doesn't exist or can't be read, this function will return those errors to the code that called the function.

Filename: src/main.rs

use std::fs::File;
use std::io::{self, Read};

1 fn read_username_from_file() -> Result<String, io::Error> {
  2 let username_file_result = File::open("hello.txt");

  3 let mut username_file = match username_file_result {
      4 Ok(file) => file,
      5 Err(e) => return Err(e),
    };

  6 let mut username = String::new();

  7 match username_file.read_to_string(&mut username) {
      8 Ok(_) => Ok(username),
      9 Err(e) => Err(e),
    }
}

Listing 9-6: A function that returns errors to the calling code using match

This function can be written in a much shorter way, but we're going to start by doing a lot of it manually in order to explore error handling; at the end, we'll show the shorter way. Let's look at the return type of the function first: Result<String, io::Error> [1]. This means the function is returning a value of the type Result<T, E>, where the generic parameter T has been filled in with the concrete type String and the generic type E has been filled in with the concrete type io::Error.

If this function succeeds without any problems, the code that calls this function will receive an Ok value that holds a String---the username that this function read from the file [8]. If this function encounters any problems, the calling code will receive an Err value that holds an instance of io::Error that contains more information about what the problems were. We chose io::Error as the return type of this function because that happens to be the type of the error value returned from both of the operations we're calling in this function's body that might fail: the File::open function [2] and the read_to_string method [7].

The body of the function starts by calling the File::open function [2]. Then we handle the Result value with a match similar to the match in Listing 9-4. If File::open succeeds, the file handle in the pattern variable file [4] becomes the value in the mutable variable username_file [3] and the function continues. In the Err case, instead of calling panic!, we use the return keyword to return early out of the function entirely and pass the error value from File::open, now in the pattern variable e, back to the calling code as this function's error value [5].

So, if we have a file handle in username_file, the function then creates a new String in variable username [6] and calls the read_to_string method on the file handle in username_file to read the contents of the file into username [7]. The read_to_string method also returns a Result because it might fail, even though File::open succeeded. So we need another match to handle that Result: if read_to_string succeeds, then our function has succeeded, and we return the username from the file that's now in username wrapped in an Ok. If read_to_string fails, we return the error value in the same way that we returned the error value in the match that handled the return value of File::open. However, we don't need to explicitly say return, because this is the last expression in the function [9].

The code that calls this code will then handle getting either an Ok value that contains a username or an Err value that contains an io::Error. It's up to the calling code to decide what to do with those values. If the calling code gets an Err value, it could call panic! and crash the program, use a default username, or look up the username from somewhere other than a file, for example. We don't have enough information on what the calling code is actually trying to do, so we propagate all the success or error information upward for it to handle appropriately.

This pattern of propagating errors is so common in Rust that Rust provides the question mark operator ? to make this easier.

A Shortcut for Propagating Errors: The ? Operator

Listing 9-7 shows an implementation of read_username_from_file that has the same functionality as in Listing 9-6, but this implementation uses the ? operator.

Filename: src/main.rs

use std::fs::File;
use std::io::{self, Read};

fn read_username_from_file() -> Result<String, io::Error> {
    let mut username_file = File::open("hello.txt")?;
    let mut username = String::new();
    username_file.read_to_string(&mut username)?;
    Ok(username)
}

Listing 9-7: A function that returns errors to the calling code using the ? operator

The ? placed after a Result value is defined to work in almost the same way as the match expressions we defined to handle the Result values in Listing 9-6. If the value of the Result is an Ok, the value inside the Ok will get returned from this expression, and the program will continue. If the value is an Err, the Err will be returned from the whole function as if we had used the return keyword so the error value gets propagated to the calling code.

There is a difference between what the match expression from Listing 9-6 does and what the ? operator does: error values that have the ? operator called on them go through the from function, defined in the From trait in the standard library, which is used to convert values from one type into another. When the ? operator calls the from function, the error type received is converted into the error type defined in the return type of the current function. This is useful when a function returns one error type to represent all the ways a function might fail, even if parts might fail for many different reasons.

For example, we could change the read_username_from_file function in Listing 9-7 to return a custom error type named OurError that we define. If we also define impl From<io::Error> for OurError to construct an instance of OurError from an io::Error, then the ? operator calls in the body of read_username_from_file will call from and convert the error types without needing to add any more code to the function.

In the context of Listing 9-7, the ? at the end of the File::open call will return the value inside an Ok to the variable username_file. If an error occurs, the ? operator will return early out of the whole function and give any Err value to the calling code. The same thing applies to the ? at the end of the read_to_string call.

The ? operator eliminates a lot of boilerplate and makes this function's implementation simpler. We could even shorten this code further by chaining method calls immediately after the ?, as shown in Listing 9-8.

Filename: src/main.rs

use std::fs::File;
use std::io::{self, Read};

fn read_username_from_file() -> Result<String, io::Error> {
    let mut username = String::new();

    File::open("hello.txt")?.read_to_string(&mut username)?;

    Ok(username)
}

Listing 9-8: Chaining method calls after the ? operator

We've moved the creation of the new String in username to the beginning of the function; that part hasn't changed. Instead of creating a variable username_file, we've chained the call to read_to_string directly onto the result of File::open("hello.txt")?. We still have a ? at the end of the read_to_string call, and we still return an Ok value containing username when both File::open and read_to_string succeed rather than returning errors. The functionality is again the same as in Listing 9-6 and Listing 9-7; this is just a different, more ergonomic way to write it.

Listing 9-9 shows a way to make this even shorter using fs::read_to_string.

Filename: src/main.rs

use std::fs;
use std::io;

fn read_username_from_file() -> Result<String, io::Error> {
    fs::read_to_string("hello.txt")
}

Listing 9-9: Using fs::read_to_string instead of opening and then reading the file

Reading a file into a string is a fairly common operation, so the standard library provides the convenient fs::read_to_string function that opens the file, creates a new String, reads the contents of the file, puts the contents into that String, and returns it. Of course, using fs::read_to_string doesn't give us the opportunity to explain all the error handling, so we did it the longer way first.

Where the ? Operator Can Be Used

The ? operator can only be used in functions whose return type is compatible with the value the ? is used on. This is because the ? operator is defined to perform an early return of a value out of the function, in the same manner as the match expression we defined in Listing 9-6. In Listing 9-6, the match was using a Result value, and the early return arm returned an Err(e) value. The return type of the function has to be a Result so that it's compatible with this return.

In Listing 9-10, let's look at the error we'll get if we use the ? operator in a main function with a return type that is incompatible with the type of the value we use ? on.

Filename: src/main.rs

use std::fs::File;

fn main() {
    let greeting_file = File::open("hello.txt")?;
}

Listing 9-10: Attempting to use the ? in the main function that returns () won't compile.

This code opens a file, which might fail. The ? operator follows the Result value returned by File::open, but this main function has the return type of (), not Result. When we compile this code, we get the following error message:

error[E0277]: the `?` operator can only be used in a function that returns
`Result` or `Option` (or another type that implements `FromResidual`)
 --> src/main.rs:4:48
  |
3 | / fn main() {
4 | |     let greeting_file = File::open("hello.txt")?;
  | |                                                ^ cannot use the `?`
operator in a function that returns `()`
5 | | }
  | |_- this function should return `Result` or `Option` to accept `?`
  |
  = help: the trait `FromResidual<Result<Infallible, std::io::Error>>` is not
implemented for `()`

This error points out that we're only allowed to use the ? operator in a function that returns Result, Option, or another type that implements FromResidual.

To fix the error, you have two choices. One choice is to change the return type of your function to be compatible with the value you're using the ? operator on as long as you have no restrictions preventing that. The other choice is to use a match or one of the Result<T, E> methods to handle the Result<T, E> in whatever way is appropriate.

The error message also mentioned that ? can be used with Option<T> values as well. As with using ? on Result, you can only use ? on Option in a function that returns an Option. The behavior of the ? operator when called on an Option<T> is similar to its behavior when called on a Result<T, E>: if the value is None, the None will be returned early from the function at that point. If the value is Some, the value inside the Some is the resultant value of the expression, and the function continues. Listing 9-11 has an example of a function that finds the last character of the first line in the given text.

fn last_char_of_first_line(text: &str) -> Option<char> {
    text.lines().next()?.chars().last()
}

Listing 9-11: Using the ? operator on an Option<T> value

This function returns Option<char> because it's possible that there is a character there, but it's also possible that there isn't. This code takes the text string slice argument and calls the lines method on it, which returns an iterator over the lines in the string. Because this function wants to examine the first line, it calls next on the iterator to get the first value from the iterator. If text is the empty string, this call to next will return None, in which case we use ? to stop and return None from last_char_of_first_line. If text is not the empty string, next will return a Some value containing a string slice of the first line in text.

The ? extracts the string slice, and we can call chars on that string slice to get an iterator of its characters. We're interested in the last character in this first line, so we call last to return the last item in the iterator. This is an Option because it's possible that the first line is the empty string; for example, if text starts with a blank line but has characters on other lines, as in "\nhi". However, if there is a last character on the first line, it will be returned in the Some variant. The ? operator in the middle gives us a concise way to express this logic, allowing us to implement the function in one line. If we couldn't use the ? operator on Option, we'd have to implement this logic using more method calls or a match expression.

Note that you can use the ? operator on a Result in a function that returns Result, and you can use the ? operator on an Option in a function that returns Option, but you can't mix and match. The ? operator won't automatically convert a Result to an Option or vice versa; in those cases, you can use methods like the ok method on Result or the ok_or method on Option to do the conversion explicitly.

So far, all the main functions we've used return (). The main function is special because it's the entry point and exit point of an executable program, and there are restrictions on what its return type can be for the program to behave as expected.

Luckily, main can also return a Result<(), E>. Listing 9-12 has the code from Listing 9-10, but we've changed the return type of main to be Result<(), Box<dyn Error>> and added a return value Ok(()) to the end. This code will now compile.

Filename: src/main.rs

use std::error::Error;
use std::fs::File;

fn main() -> Result<(), Box<dyn Error>> {
    let greeting_file = File::open("hello.txt")?;

    Ok(())
}

Listing 9-12: Changing main to return Result<(), E> allows the use of the ? operator on Result values.

The Box<dyn Error> type is a trait object, which we'll talk about in "Using Trait Objects That Allow for Values of Different Types". For now, you can read Box<dyn Error> to mean "any kind of error." Using ? on a Result value in a main function with the error type Box<dyn Error> is allowed because it allows any Err value to be returned early. Even though the body of this main function will only ever return errors of type std::io::Error, by specifying Box<dyn Error>, this signature will continue to be correct even if more code that returns other errors is added to the body of main.

When a main function returns a Result<(), E>, the executable will exit with a value of 0 if main returns Ok(()) and will exit with a nonzero value if main returns an Err value. Executables written in C return integers when they exit: programs that exit successfully return the integer 0, and programs that error return some integer other than 0. Rust also returns integers from executables to be compatible with this convention.

The main function may return any types that implement the std::process::Termination trait, which contains a function report that returns an ExitCode. Consult the standard library documentation for more information on implementing the Termination trait for your own types.

Now that we've discussed the details of calling panic! or returning Result, let's return to the topic of how to decide which is appropriate to use in which cases.

Summary

Congratulations! You have completed the Recoverable Errors With Result lab. You can practice more labs in LabEx to improve your skills.

Other Rust Tutorials you may like