Visualizing Variable Relationships

PythonPythonBeginner
Practice Now

This tutorial is from open-source community. Access the source code

Introduction

In this lab, we will learn how to create a simple scatter plot using Python's Matplotlib library. A scatter plot is a type of plot that displays values for two variables as a collection of points. Each point represents the values of the two variables, and the position of the point represents the values of the two variables. Scatter plots are useful for identifying relationships between variables and for identifying outliers.

VM Tips

After the VM startup is done, click the top left corner to switch to the Notebook tab to access Jupyter Notebook for practice.

Sometimes, you may need to wait a few seconds for Jupyter Notebook to finish loading. The validation of operations cannot be automated because of limitations in Jupyter Notebook.

If you face issues during learning, feel free to ask Labby. Provide feedback after the session, and we will promptly resolve the problem for you.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL matplotlib(("`Matplotlib`")) -.-> matplotlib/BasicConceptsGroup(["`Basic Concepts`"]) matplotlib(("`Matplotlib`")) -.-> matplotlib/PlottingDataGroup(["`Plotting Data`"]) python(("`Python`")) -.-> python/DataStructuresGroup(["`Data Structures`"]) python(("`Python`")) -.-> python/ModulesandPackagesGroup(["`Modules and Packages`"]) python(("`Python`")) -.-> python/PythonStandardLibraryGroup(["`Python Standard Library`"]) python(("`Python`")) -.-> python/DataScienceandMachineLearningGroup(["`Data Science and Machine Learning`"]) matplotlib/BasicConceptsGroup -.-> matplotlib/importing_matplotlib("`Importing Matplotlib`") matplotlib/BasicConceptsGroup -.-> matplotlib/figures_axes("`Understanding Figures and Axes`") matplotlib/PlottingDataGroup -.-> matplotlib/scatter_plots("`Scatter Plots`") python/DataStructuresGroup -.-> python/tuples("`Tuples`") python/ModulesandPackagesGroup -.-> python/importing_modules("`Importing Modules`") python/ModulesandPackagesGroup -.-> python/standard_libraries("`Common Standard Libraries`") python/PythonStandardLibraryGroup -.-> python/math_random("`Math and Random`") python/DataScienceandMachineLearningGroup -.-> python/numerical_computing("`Numerical Computing`") python/DataScienceandMachineLearningGroup -.-> python/data_visualization("`Data Visualization`") subgraph Lab Skills matplotlib/importing_matplotlib -.-> lab-48918{{"`Visualizing Variable Relationships`"}} matplotlib/figures_axes -.-> lab-48918{{"`Visualizing Variable Relationships`"}} matplotlib/scatter_plots -.-> lab-48918{{"`Visualizing Variable Relationships`"}} python/tuples -.-> lab-48918{{"`Visualizing Variable Relationships`"}} python/importing_modules -.-> lab-48918{{"`Visualizing Variable Relationships`"}} python/standard_libraries -.-> lab-48918{{"`Visualizing Variable Relationships`"}} python/math_random -.-> lab-48918{{"`Visualizing Variable Relationships`"}} python/numerical_computing -.-> lab-48918{{"`Visualizing Variable Relationships`"}} python/data_visualization -.-> lab-48918{{"`Visualizing Variable Relationships`"}} end

Import the necessary libraries

In this step, we will import the necessary libraries for creating a scatter plot. We will be using the Matplotlib library for creating the plot and the NumPy library for generating random data.

import matplotlib.pyplot as plt
import numpy as np

Generate random data

In this step, we will generate random data for our scatter plot. We will be generating 50 data points for each variable using the NumPy library.

np.random.seed(19680801)

N = 50
x = np.random.rand(N)
y = np.random.rand(N)

Define the size and color of the points

In this step, we will define the size and color of the points in our scatter plot. We will be using the NumPy library to generate random values for the size and color of the points.

colors = np.random.rand(N)
area = (30 * np.random.rand(N))**2

Create the scatter plot

In this step, we will create the scatter plot using the Matplotlib library. We will use the scatter function to create the plot and specify the size and color of the points.

plt.scatter(x, y, s=area, c=colors, alpha=0.5)
plt.show()

Summary

In this lab, we learned how to create a simple scatter plot using Python's Matplotlib library. We generated random data for the plot using the NumPy library, defined the size and color of the points, and created the plot using the scatter function from the Matplotlib library. Scatter plots are useful for identifying relationships between variables and for identifying outliers.

Other Python Tutorials you may like