Stem Plot Visualization with Python

PythonPythonBeginner
Practice Now

This tutorial is from open-source community. Access the source code

Introduction

The stem plot is a type of plot used in data visualization. It is used to plot vertical lines from a baseline to the y-coordinate and places a marker at the tip. In this lab, we will learn how to use the stem plot function in Python's Matplotlib library.

VM Tips

After the VM startup is done, click the top left corner to switch to the Notebook tab to access Jupyter Notebook for practice.

Sometimes, you may need to wait a few seconds for Jupyter Notebook to finish loading. The validation of operations cannot be automated because of limitations in Jupyter Notebook.

If you face issues during learning, feel free to ask Labby. Provide feedback after the session, and we will promptly resolve the problem for you.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL matplotlib(("`Matplotlib`")) -.-> matplotlib/BasicConceptsGroup(["`Basic Concepts`"]) python(("`Python`")) -.-> python/DataStructuresGroup(["`Data Structures`"]) python(("`Python`")) -.-> python/ModulesandPackagesGroup(["`Modules and Packages`"]) python(("`Python`")) -.-> python/DataScienceandMachineLearningGroup(["`Data Science and Machine Learning`"]) matplotlib/BasicConceptsGroup -.-> matplotlib/importing_matplotlib("`Importing Matplotlib`") matplotlib/BasicConceptsGroup -.-> matplotlib/figures_axes("`Understanding Figures and Axes`") python/DataStructuresGroup -.-> python/tuples("`Tuples`") python/ModulesandPackagesGroup -.-> python/importing_modules("`Importing Modules`") python/DataScienceandMachineLearningGroup -.-> python/numerical_computing("`Numerical Computing`") python/DataScienceandMachineLearningGroup -.-> python/data_visualization("`Data Visualization`") subgraph Lab Skills matplotlib/importing_matplotlib -.-> lab-48958{{"`Stem Plot Visualization with Python`"}} matplotlib/figures_axes -.-> lab-48958{{"`Stem Plot Visualization with Python`"}} python/tuples -.-> lab-48958{{"`Stem Plot Visualization with Python`"}} python/importing_modules -.-> lab-48958{{"`Stem Plot Visualization with Python`"}} python/numerical_computing -.-> lab-48958{{"`Stem Plot Visualization with Python`"}} python/data_visualization -.-> lab-48958{{"`Stem Plot Visualization with Python`"}} end

Import Libraries

Before we begin, we need to import the necessary libraries. In this case, we will be using the Matplotlib and Numpy libraries.

import matplotlib.pyplot as plt
import numpy as np

Generate Data

Next, we need to generate some data to use in our stem plot. We will create two arrays using the Numpy library.

x = np.linspace(0.1, 2 * np.pi, 41)
y = np.exp(np.sin(x))

Create a Basic Stem Plot

We can now create a basic stem plot using the stem function from the Matplotlib library.

plt.stem(x, y)
plt.show()

This will generate a plot with vertical lines from the baseline to the y-coordinate and markers at the tip.

Customizing the Plot

We can customize the plot by adjusting the baseline using the bottom parameter. We can also adjust the format properties of the plot using the linefmt, markerfmt, and basefmt parameters.

markerline, stemlines, baseline = plt.stem(
    x, y, linefmt='grey', markerfmt='D', bottom=1.1)
markerline.set_markerfacecolor('none')
plt.show()

This will generate a plot with a grey line format and diamond-shaped markers. The baseline has also been adjusted to 1.1.

Summary

In this lab, we learned how to use the stem plot function in Python's Matplotlib library. We first imported the necessary libraries, generated some data, and created a basic stem plot. We then customized the plot by adjusting the baseline and format properties. By following these steps, we can create informative and visually appealing stem plots for our data.

Other Python Tutorials you may like