Advanced Map Techniques
Functional Programming Paradigms
Composition of Functions
def square(x):
return x ** 2
def increment(x):
return x + 1
def compose(*functions):
def inner(arg):
for func in reversed(functions):
arg = func(arg)
return arg
return inner
numbers = [1, 2, 3, 4, 5]
composed_func = compose(square, increment)
result = list(map(composed_func, numbers))
print(result) ## Output: [4, 9, 16, 25, 36]
Parallel Processing with Map
graph TD
A[Input Data] --> B[Parallel Map]
B --> C[Processed Chunks]
C --> D[Aggregated Result]
Multiprocessing Map
from multiprocessing import Pool
def heavy_computation(x):
return x ** 2 + x * 3
def parallel_map(func, items):
with Pool() as pool:
return pool.map(func, items)
large_numbers = range(1000)
processed_numbers = parallel_map(heavy_computation, large_numbers)
print(len(processed_numbers))
Advanced Mapping Strategies
Nested Mapping
## Transforming nested structures
nested_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
flattened = list(map(lambda sublist: list(map(lambda x: x * 2, sublist)), nested_list))
print(flattened) ## Output: [[2, 4, 6], [8, 10, 12], [14, 16, 18]]
Functional Mapping Techniques
Technique |
Description |
Use Case |
Currying |
Function transformation |
Complex function application |
Partial Application |
Fixing function arguments |
Specialized mapping |
Higher-Order Functions |
Functions returning functions |
Dynamic mapping |
Currying and Partial Application
from functools import partial
def multiply(x, y):
return x * y
## Partial application
double = partial(multiply, 2)
numbers = [1, 2, 3, 4, 5]
doubled_numbers = list(map(double, numbers))
print(doubled_numbers) ## Output: [2, 4, 6, 8, 10]
Error Handling in Map
def safe_divide(x, y):
try:
return x / y
except ZeroDivisionError:
return None
numbers = [10, 20, 0, 40, 50]
divisors = [2, 0, 5, 0, 10]
result = list(map(safe_divide, numbers, divisors))
print(result) ## Output: [5.0, None, 0.0, None, 5.0]
Custom Map Implementations
def custom_map(func, iterable, *iterables):
iterators = [iter(iterable)] + list(map(iter, iterables))
while True:
try:
yield func(*[next(it) for it in iterators])
except StopIteration:
break
def add_three(x, y, z):
return x + y + z
list1 = [1, 2, 3]
list2 = [10, 20, 30]
list3 = [100, 200, 300]
result = list(custom_map(add_three, list1, list2, list3))
print(result) ## Output: [111, 222, 333]
- Use generator expressions for large datasets
- Leverage
itertools
for complex iterations
- Consider lazy evaluation techniques
## Complex type conversions
class DataTransformer:
@staticmethod
def to_dict(item):
return {'value': item, 'squared': item ** 2}
numbers = [1, 2, 3, 4, 5]
transformed_data = list(map(DataTransformer.to_dict, numbers))
print(transformed_data)
By mastering these advanced map techniques, you'll unlock powerful data transformation capabilities in your Python projects with LabEx.