Numpy Multiply Function

PythonPythonBeginner
Practice Now

Introduction

In this lab, we will learn about the multiply() function in the Numpy library. This function is used to repeat a string element in an ndarray by n number of times, where n is any integer value. This function performs in an element-wise manner, covering all the array elements.

VM Tips

After the VM startup is done, click the top left corner to switch to the Notebook tab to access Jupyter Notebook for practice.

Sometimes, you may need to wait a few seconds for Jupyter Notebook to finish loading. The validation of operations cannot be automated because of limitations in Jupyter Notebook.

If you face issues during learning, feel free to ask Labby. Provide feedback after the session, and we will promptly resolve the problem for you.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL python(("`Python`")) -.-> python/DataStructuresGroup(["`Data Structures`"]) python(("`Python`")) -.-> python/ModulesandPackagesGroup(["`Modules and Packages`"]) python(("`Python`")) -.-> python/DataScienceandMachineLearningGroup(["`Data Science and Machine Learning`"]) python(("`Python`")) -.-> python/FunctionsGroup(["`Functions`"]) numpy(("`NumPy`")) -.-> numpy/ArrayBasicsGroup(["`Array Basics`"]) numpy(("`NumPy`")) -.-> numpy/IndexingandSlicingGroup(["`Indexing and Slicing`"]) python/DataStructuresGroup -.-> python/lists("`Lists`") python/DataStructuresGroup -.-> python/tuples("`Tuples`") python/ModulesandPackagesGroup -.-> python/importing_modules("`Importing Modules`") python/DataScienceandMachineLearningGroup -.-> python/numerical_computing("`Numerical Computing`") python/FunctionsGroup -.-> python/build_in_functions("`Build-in Functions`") numpy/ArrayBasicsGroup -.-> numpy/1d_array("`1D Array Creation`") numpy/ArrayBasicsGroup -.-> numpy/data_array("`Data to Array`") numpy/IndexingandSlicingGroup -.-> numpy/bool_idx("`Boolean Indexing`") numpy/IndexingandSlicingGroup -.-> numpy/fancy_idx("`Fancy Indexing`") subgraph Lab Skills python/lists -.-> lab-86485{{"`Numpy Multiply Function`"}} python/tuples -.-> lab-86485{{"`Numpy Multiply Function`"}} python/importing_modules -.-> lab-86485{{"`Numpy Multiply Function`"}} python/numerical_computing -.-> lab-86485{{"`Numpy Multiply Function`"}} python/build_in_functions -.-> lab-86485{{"`Numpy Multiply Function`"}} numpy/1d_array -.-> lab-86485{{"`Numpy Multiply Function`"}} numpy/data_array -.-> lab-86485{{"`Numpy Multiply Function`"}} numpy/bool_idx -.-> lab-86485{{"`Numpy Multiply Function`"}} numpy/fancy_idx -.-> lab-86485{{"`Numpy Multiply Function`"}} end

Import Numpy Library

In this step, we will import the numpy library using the following code snippet.

import numpy as np

Create an array with one string element

In this step, we will create an array with one string element and apply the multiply() function to this element.

arr = np.array(['Study'])
print("The Original Array is :")
print(arr)

i = 5

Apply the multiply() function to the array

In this step, we will apply the multiply() function to the array with one string element to repeat the string element by i number of times.

output = np.char.multiply(arr, i)
print("\nThe New array is:")
print(output)

Create an array with more than one element

In this step, we will create an array with more than one string elements and apply the multiply() function to this array.

arr = np.array(['LabEx', 'Online', 'Portal'])
print("The Original Array :")
print(arr)

i = 2

Apply the multiply() function to the array with multiple elements

In this step, we will apply the multiply() function to the array with multiple elements to repeat the string elements by i number of times.

output = np.char.multiply(arr, i)
print("\nThe Resultant array :")
print(output)

Summary

In this lab, we learned about the multiply() function in the Numpy library. We applied this function to arrays with one and multiple string elements to repeat the string elements by i number of times. This function performs in an element-wise manner, covering all the array elements.

Other Python Tutorials you may like