Iterator Optimization
Memory Efficiency Techniques
## Memory-efficient generator
def large_file_reader(filename):
with open(filename, 'r') as file:
for line in file:
yield line.strip()
## Compared to memory-intensive approach
def memory_intensive_reader(filename):
with open(filename, 'r') as file:
return file.readlines()
graph TD
A[Iterator Optimization] --> B[Memory Management]
A --> C[Computational Efficiency]
A --> D[Lazy Evaluation]
Lazy Evaluation Strategies
class OptimizedRange:
def __init__(self, start, end, step=1):
self.start = start
self.end = end
self.step = step
def __iter__(self):
current = self.start
while current < self.end:
yield current
current += self.step
Advanced Iteration Techniques
import itertools
## Efficient combination generation
def efficient_combinations(items):
return itertools.combinations(items, 2)
## Memory-efficient infinite sequence
def count_generator(start=0):
return itertools.count(start)
Optimization Technique |
Memory Usage |
Computational Complexity |
Generator |
Low |
O(1) |
List Comprehension |
High |
O(n) |
Iterator Protocol |
Medium |
O(1) |
import timeit
def traditional_iteration(data):
return [x * 2 for x in data]
def generator_iteration(data):
return (x * 2 for x in data)
## Performance comparison
data = range(1000000)
traditional_time = timeit.timeit(lambda: list(traditional_iteration(data)), number=10)
generator_time = timeit.timeit(lambda: list(generator_iteration(data)), number=10)
Advanced Optimization Patterns
def chained_iterators(*iterators):
for iterator in iterators:
yield from iterator
## Efficient data processing pipeline
def data_pipeline(raw_data):
return (
item
for item in raw_data
if item > 0
)
Optimization Best Practices
- Use generators for large datasets
- Implement lazy evaluation
- Leverage
itertools
module
- Avoid unnecessary list conversions
- Profile and measure performance
At LabEx, we emphasize the importance of understanding iterator optimization to create high-performance Python applications.