Pandas DataFrame Backfill Method

PandasPandasBeginner
Practice Now

Introduction

In this lab, we will learn how to use the DataFrame.backfill() method in the Pandas library. This method allows us to fill missing values in a DataFrame with values from the next entry in the same column. We will learn how to use this method with various parameters to handle missing data effectively.

VM Tips

After the VM startup is done, click the top left corner to switch to the Notebook tab to access Jupyter Notebook for practice.

Sometimes, you may need to wait a few seconds for Jupyter Notebook to finish loading. The validation of operations cannot be automated because of limitations in Jupyter Notebook.

If you face issues during learning, feel free to ask Labby. Provide feedback after the session, and we will promptly resolve the problem for you.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL pandas(("`Pandas`")) -.-> pandas/DataSelectionGroup(["`Data Selection`"]) pandas(("`Pandas`")) -.-> pandas/DataCleaningGroup(["`Data Cleaning`"]) python(("`Python`")) -.-> python/ModulesandPackagesGroup(["`Modules and Packages`"]) python(("`Python`")) -.-> python/PythonStandardLibraryGroup(["`Python Standard Library`"]) python(("`Python`")) -.-> python/DataScienceandMachineLearningGroup(["`Data Science and Machine Learning`"]) pandas/DataSelectionGroup -.-> pandas/select_columns("`Select Columns`") pandas/DataSelectionGroup -.-> pandas/select_rows("`Select Rows`") pandas/DataCleaningGroup -.-> pandas/handle_missing_values("`Handling Missing Values`") python/ModulesandPackagesGroup -.-> python/using_packages("`Using Packages`") python/PythonStandardLibraryGroup -.-> python/data_collections("`Data Collections`") python/PythonStandardLibraryGroup -.-> python/data_serialization("`Data Serialization`") python/DataScienceandMachineLearningGroup -.-> python/data_analysis("`Data Analysis`") subgraph Lab Skills pandas/select_columns -.-> lab-68589{{"`Pandas DataFrame Backfill Method`"}} pandas/select_rows -.-> lab-68589{{"`Pandas DataFrame Backfill Method`"}} pandas/handle_missing_values -.-> lab-68589{{"`Pandas DataFrame Backfill Method`"}} python/using_packages -.-> lab-68589{{"`Pandas DataFrame Backfill Method`"}} python/data_collections -.-> lab-68589{{"`Pandas DataFrame Backfill Method`"}} python/data_serialization -.-> lab-68589{{"`Pandas DataFrame Backfill Method`"}} python/data_analysis -.-> lab-68589{{"`Pandas DataFrame Backfill Method`"}} end

Create a DataFrame with missing values

First, let's create a DataFrame with missing values using the Pandas library.

import pandas as pd

df = pd.DataFrame({'A': [None, 3, None, None],
                   'B': [2, 4, None, 3],
                   'C': [None, None, None, 1],
                   'D': [0, 1, 5, 4]},
                  columns=['A', 'B', 'C', 'D'])

print(df)

The code above creates a DataFrame with missing values in columns 'A', 'B', 'C', and 'D'.

Fill missing values using DataFrame.backfill()

In this step, we will use the DataFrame.backfill() method to fill the missing values in the DataFrame.

filled_df = df.bfill()

print(filled_df)

The bfill() method is applied to the DataFrame, and the missing values are filled with the next available value in the same column.

Fill missing values with axis=1

In this step, we will use the axis parameter of the DataFrame.backfill() method to fill the missing values horizontally, i.e., along the columns.

filled_df = df.bfill(axis=1)

print(filled_df)

By setting axis=1, the bfill() method fills the missing values with values from the next available entry in the same row.

Limit the number of consecutive NaN values filled

In this step, we will use the limit parameter of the DataFrame.backfill() method to limit the number of consecutive NaN values filled.

filled_df = df.bfill(limit=2)

print(filled_df)

By setting limit=2, the bfill() method will only fill a maximum of two consecutive NaN values in each column.

Use inplace=True for in-place modification

In this step, we will use the inplace parameter of the DataFrame.backfill() method to modify the DataFrame in-place.

df.bfill(inplace=True)

print(df)

By setting inplace=True, the bfill() method modifies the original DataFrame instead of returning a new DataFrame.

Summary

In this lab, we learned how to use the DataFrame.backfill() method in the Pandas library. We covered different ways to fill missing values in a DataFrame, including filling vertically and horizontally, limiting the number of consecutive NaN values filled, and performing the filling operation in-place. Understanding how to handle missing data is essential for data analysis and modeling tasks. The backfill() method is a useful tool in this regard.

Other Pandas Tutorials you may like