Advanced Digit Control
Comprehensive Digit Manipulation Strategies
Custom Truncation Functions
def custom_truncate(number, decimals=2):
"""
Advanced truncation with precise control
"""
multiplier = 10 ** decimals
return int(number * multiplier) / multiplier
## Examples
print(custom_truncate(3.14159, 3)) ## Outputs: 3.141
print(custom_truncate(9.99999, 2)) ## Outputs: 9.99
Precision Control Techniques
Decimal Module Advanced Usage
from decimal import Decimal, ROUND_DOWN, ROUND_UP
class PrecisionController:
@staticmethod
def truncate(value, precision=2):
return Decimal(str(value)).quantize(
Decimal(f'1.{"0" * precision}'),
rounding=ROUND_DOWN
)
@staticmethod
def round_up(value, precision=2):
return Decimal(str(value)).quantize(
Decimal(f'1.{"0" * precision}'),
rounding=ROUND_UP
)
## Usage
controller = PrecisionController()
print(controller.truncate(3.14159)) ## Outputs: 3.14
print(controller.round_up(3.14159)) ## Outputs: 3.15
Digit Manipulation Workflow
graph TD
A[Input Number] --> B{Precision Required}
B --> |Truncate| C[Custom Truncation]
B --> |Round| D[Decimal Rounding]
B --> |Format| E[String Formatting]
C --> F[Final Precise Value]
D --> F
E --> F
Advanced Precision Strategies
Strategy |
Method |
Precision |
Complexity |
Simple Truncation |
int() |
Low |
Simple |
Custom Function |
Multiplier |
Medium |
Moderate |
Decimal Module |
Precise Control |
High |
Complex |
Format Strings |
Visual Formatting |
Flexible |
Simple |
Handling Scientific Notation
def scientific_precision(number, sig_digits=3):
"""
Control precision in scientific notation
"""
return f'{number:.{sig_digits}e}'
## Examples
print(scientific_precision(1234.56789)) ## Outputs: 1.235e+03
print(scientific_precision(0.00012345, 4)) ## Outputs: 1.235e-04
Benchmark Different Approaches
import timeit
def method1(x):
return int(x * 100) / 100
def method2(x):
return round(x, 2)
## Performance check
print(timeit.timeit('method1(3.14159)', globals=globals(), number=100000))
print(timeit.timeit('method2(3.14159)', globals=globals(), number=100000))
Key Takeaways
- Choose precision method based on specific requirements
- Understand trade-offs between simplicity and accuracy
- Use appropriate techniques for different scenarios
At LabEx, we emphasize mastering these advanced digit control techniques for robust numerical computing.