Conditional Skipping
Advanced Iteration Control
Conditional skipping goes beyond simple continue
statements, allowing more complex and nuanced control over loop iterations in Python.
Complex Conditional Strategies
Multiple Condition Skipping
## Skip items based on multiple conditions
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for num in numbers:
if num % 2 == 0 and num % 3 == 0:
continue
print(f"Processed number: {num}")
Nested Condition Skipping
data = [
{'name': 'Alice', 'age': 25, 'active': True},
{'name': 'Bob', 'age': 17, 'active': False},
{'name': 'Charlie', 'age': 30, 'active': True}
]
for person in data:
if not person['active']:
continue
if person['age'] < 18:
continue
print(f"Processed: {person['name']}")
Conditional Skipping Flow
graph TD
A[Start Iteration] --> B{First Condition}
B --> |Condition Met| C[Skip Iteration]
B --> |Condition Not Met| D{Second Condition}
D --> |Condition Met| C
D --> |Condition Not Met| E[Process Item]
E --> F[Continue Loop]
Advanced Skipping Techniques
Technique |
Description |
Example Use |
Complex Conditions |
Multiple filter criteria |
Data validation |
Nested Conditions |
Layered filtering |
Advanced data processing |
Dynamic Skipping |
Conditional logic |
Runtime filtering |
- Use conditional skipping to optimize loop performance
- Minimize computational overhead
- Keep skip conditions clear and concise
Practical Example: Data Filtering
## Advanced conditional skipping in data processing
transactions = [
{'amount': 100, 'type': 'purchase', 'valid': True},
{'amount': -50, 'type': 'refund', 'valid': False},
{'amount': 200, 'type': 'purchase', 'valid': True}
]
processed_total = 0
for transaction in transactions:
if not transaction['valid']:
continue
if transaction['type'] != 'purchase':
continue
processed_total += transaction['amount']
print(f"Total processed: {processed_total}")
Key Takeaways
- Conditional skipping provides granular control over iterations
- Combine multiple conditions for complex filtering
- Maintain readability and performance in loop logic
Mastering conditional skipping allows you to create more sophisticated and efficient Python loops that precisely match your data processing requirements.