Memory Optimization Techniques
Efficient Memory Management Strategies
1. Slots Optimization
class OptimizedClass:
__slots__ = ['name', 'age']
def __init__(self, name, age):
self.name = name
self.age = age
2. Generator Expressions
## Memory-efficient iteration
def memory_efficient_processing():
return (x**2 for x in range(1000000))
Memory Reduction Techniques
graph TD
A[Memory Optimization] --> B[Minimize Objects]
A --> C[Use Generators]
A --> D[Implement Slots]
A --> E[Avoid Unnecessary Copies]
3. Weak References
import weakref
class LightweightObject:
def __init__(self, data):
self.data = data
## Create weak reference
weak_ref = weakref.ref(LightweightObject(42))
Comparison of Memory Techniques
Technique |
Memory Reduction |
Complexity |
Use Case |
slots |
High |
Low |
Fixed Attribute Classes |
Generators |
Medium |
Low |
Large Data Processing |
Weak References |
Medium |
Medium |
Caching |
4. Memory-Efficient Data Structures
from array import array
from collections import namedtuple
## More memory-efficient than lists
numeric_array = array('i', [1, 2, 3, 4, 5])
## Lightweight alternative to classes
Point = namedtuple('Point', ['x', 'y'])
Best Practices
- Use appropriate data structures
- Leverage lazy evaluation
- Release unused references
- Profile memory usage
At LabEx, we recommend continuous learning and practice to master memory optimization techniques.