Effective Error Handling
Comprehensive Error Management Strategies
Effective error handling in recursive generators requires a multi-layered approach that combines prevention, detection, and graceful recovery.
Error Handling Principles
Principle |
Description |
Implementation |
Anticipation |
Predict potential errors |
Proactive validation |
Containment |
Limit error impact |
Localized error handling |
Graceful Degradation |
Maintain system stability |
Fallback mechanisms |
Advanced Error Handling Techniques
1. Custom Error Wrapper
class GeneratorErrorHandler:
@staticmethod
def handle(generator_func):
def wrapper(*args, **kwargs):
try:
return generator_func(*args, **kwargs)
except RecursionError:
print("Recursion limit exceeded")
return iter([]) ## Return empty iterator
except TypeError as e:
print(f"Invalid input: {e}")
return iter([])
except ValueError as e:
print(f"Invalid value: {e}")
return iter([])
return wrapper
2. Comprehensive Error Recovery
def safe_recursive_generator(max_depth=100):
def decorator(func):
def wrapper(*args, **kwargs):
try:
## Implement multi-level error protection
generator = func(*args, **kwargs)
## Add depth tracking
depth_tracker = 0
for item in generator:
depth_tracker += 1
if depth_tracker > max_depth:
raise RecursionError("Maximum depth exceeded")
yield item
except RecursionError:
print("Generator exceeded safe recursion depth")
yield from [] ## Return empty generator
except Exception as e:
print(f"Unexpected error: {e}")
yield from []
return wrapper
return decorator
Error Handling Flow
graph TD
A[Generator Execution] --> B{Input Validation}
B -->|Valid| C{Recursion Depth Check}
B -->|Invalid| D[Handle TypeError]
C -->|Safe| E[Generate Items]
C -->|Exceeded| F[Implement Fallback]
E --> G{Error Occurs?}
G -->|Yes| H[Error Recovery]
G -->|No| I[Complete Execution]
Error Handling Patterns
Retry Mechanism
def retry_generator(func, max_retries=3):
def wrapper(*args, **kwargs):
for attempt in range(max_retries):
try:
yield from func(*args, **kwargs)
break
except Exception as e:
if attempt == max_retries - 1:
print(f"Final attempt failed: {e}")
break
print(f"Retry attempt {attempt + 1}: {e}")
return wrapper
Best Practices
- Implement comprehensive input validation
- Use decorators for consistent error management
- Provide meaningful error messages
- Create fallback mechanisms
- Log errors for debugging
Error Logging Example
import logging
def log_generator_errors(generator_func):
def wrapper(*args, **kwargs):
try:
yield from generator_func(*args, **kwargs)
except Exception as e:
logging.error(f"Generator error: {e}")
raise
return wrapper
- Minimize performance overhead
- Use lightweight error handling mechanisms
- Balance between error protection and execution efficiency
At LabEx, we recommend a holistic approach to error handling that prioritizes system reliability and developer experience.