Advanced next() Techniques
Custom Iterator Implementation
Creating Complex Iterators
class InfiniteSequence:
def __init__(self, start=0):
self.current = start
def __iter__(self):
return self
def __next__(self):
result = self.current
self.current += 1
return result
Generator-Based Advanced Techniques
Infinite Generator with next()
def fibonacci_generator():
a, b = 0, 1
while True:
yield a
a, b = b, a + b
fib = fibonacci_generator()
print(next(fib)) ## 0
print(next(fib)) ## 1
print(next(fib)) ## 1
from itertools import chain
def advanced_iterator_manipulation():
iter1 = iter([1, 2, 3])
iter2 = iter([4, 5, 6])
combined = chain(iter1, iter2)
return combined
Advanced next() Workflow
graph TD
A[Start Iterator] --> B{Complex Iteration}
B --> C[Custom Iterator]
B --> D[Generator Technique]
B --> E[Iterator Chaining]
C --> F[Advanced Iteration]
D --> F
E --> F
Advanced Iteration Techniques
Technique |
Description |
Use Case |
Custom Iterators |
User-defined iteration logic |
Complex data structures |
Generator Functions |
Lazy evaluation |
Memory-efficient sequences |
Iterator Chaining |
Combining multiple iterators |
Sequential data processing |
def lazy_evaluation_example():
return (x**2 for x in range(1000000))
## Memory-efficient large sequence processing
large_sequence = lazy_evaluation_example()
Error Handling in Advanced Iterations
def safe_advanced_iteration(iterator, max_iterations=10):
for _ in range(max_iterations):
try:
yield next(iterator)
except StopIteration:
break
Learning with LabEx
LabEx encourages exploring advanced iterator techniques through hands-on coding challenges and interactive learning modules.