Custom Numeric Classes
Introduction to Custom Numeric Types
Creating custom numeric classes allows developers to design specialized numeric types that extend Python's built-in numeric capabilities, providing more precise and domain-specific numerical representations.
Design Principles for Custom Numeric Classes
graph TD
A[Custom Numeric Classes] --> B[Inheritance]
A --> C[Operator Overloading]
A --> D[Type Conversion]
A --> E[Validation]
B --> F[Extend Numeric Types]
C --> G[Custom Mathematical Behavior]
D --> H[Support Type Casting]
E --> I[Ensure Data Integrity]
Implementing a Custom Monetary Class
class Money:
def __init__(self, amount, currency='USD'):
self._amount = round(float(amount), 2)
self._currency = currency
def __repr__(self):
return f"{self._currency} {self._amount:.2f}"
def __add__(self, other):
if self._currency != other._currency:
raise ValueError("Cannot add different currencies")
return Money(self._amount + other._amount, self._currency)
def __mul__(self, factor):
return Money(self._amount * factor, self._currency)
def __eq__(self, other):
return (self._amount == other._amount and
self._currency == other._currency)
## Usage example
price1 = Money(10.50)
price2 = Money(20.75)
total = price1 + price2
discounted = price1 * 0.9
Advanced Numeric Class Features
Feature |
Description |
Implementation Approach |
Validation |
Enforce numeric constraints |
Custom validation methods |
Precision |
Control decimal places |
Rounding and formatting |
Conversion |
Support type casting |
__float__() , __int__() methods |
Comparison |
Custom comparison logic |
Implement comparison methods |
Scientific Numeric Class Example
import math
class ScientificNumber:
def __init__(self, value, uncertainty=0):
self.value = float(value)
self.uncertainty = float(uncertainty)
def __add__(self, other):
new_value = self.value + other.value
new_uncertainty = math.sqrt(
self.uncertainty**2 + other.uncertainty**2
)
return ScientificNumber(new_value, new_uncertainty)
def __repr__(self):
return f"{self.value} Âą {self.uncertainty}"
def relative_uncertainty(self):
return (self.uncertainty / self.value) * 100
## Usage in LabEx scientific computing
measurement1 = ScientificNumber(10, 0.5)
measurement2 = ScientificNumber(5, 0.2)
result = measurement1 + measurement2
Error Handling and Type Safety
class SafeInteger:
def __init__(self, value):
if not isinstance(value, (int, float)):
raise TypeError("Value must be numeric")
self._value = int(value)
def __add__(self, other):
if not isinstance(other, SafeInteger):
other = SafeInteger(other)
return SafeInteger(self._value + other._value)
- Minimize computational overhead
- Use built-in methods when possible
- Profile custom numeric classes in LabEx environments
- Consider performance impact of complex operations
Best Practices
- Implement comprehensive type checking
- Provide clear error messages
- Maintain mathematical consistency
- Support common numeric operations
- Implement appropriate type conversions
Key Takeaways
- Custom numeric classes extend Python's numeric capabilities
- Operator overloading enables intuitive mathematical behavior
- Careful design ensures type safety and precision
- Supports domain-specific numerical representations