Advanced Techniques
class ExportControlMeta(type):
def __new__(cls, name, bases, attrs):
exportable = attrs.get('__exportable__', [])
attrs['__all__'] = exportable
return super().__new__(cls, name, bases, attrs)
class AdvancedModule(metaclass=ExportControlMeta):
__exportable__ = ['method1', 'method2']
def method1(self):
pass
def method2(self):
pass
Dynamic Symbol Manipulation
graph TD
A[Symbol Manipulation] --> B[Runtime Addition]
A --> C[Conditional Export]
A --> D[Reflection Techniques]
Reflection-Based Export Strategy
def export_matching_symbols(module, pattern):
exports = {}
for name, value in vars(module).items():
if name.startswith(pattern):
exports[name] = value
return exports
Advanced Export Techniques
Technique |
Description |
Complexity |
Metaclass Control |
Programmatic symbol management |
High |
Decorator-Based Export |
Conditional symbol exposure |
Medium |
Runtime Reflection |
Dynamic symbol discovery |
High |
Decorator-Based Symbol Management
def export_symbol(func):
if not hasattr(func.__module__, '__exported_symbols__'):
setattr(func.__module__, '__exported_symbols__', [])
func.__module__.__exported_symbols__.append(func.__name__)
return func
@export_symbol
def specialized_function():
pass
Symbol Lookup Optimization
import sys
def optimize_symbol_lookup(module):
## Create fast lookup dictionary
module.__symbol_cache__ = {
name: getattr(module, name)
for name in dir(module)
if not name.startswith('_')
}
Complex Export Patterns
Conditional Module Export
def conditional_export(condition):
def decorator(cls):
if condition:
cls.__exportable__ = True
return cls
return decorator
@conditional_export(sys.platform == 'linux')
class PlatformSpecificModule:
pass
LabEx Recommended Practices
- Use metaclasses for advanced symbol management
- Implement flexible export strategies
- Balance between flexibility and performance
- Maintain clear and predictable export interfaces