Python Debugging Fundamentals
Debugging Workflow
graph TD
A[Identify Issue] --> B[Reproduce Problem]
B --> C[Analyze Error]
C --> D[Select Debugging Tool]
D --> E[Resolve Issue]
1. Python Debugger (pdb)
## Basic pdb usage
python3 -m pdb script.py
## Debugging commands
## n - next line
## c - continue execution
## p variable - print variable
2. Logging Module
import logging
## Configure logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
## Log messages
logger.debug('Debug information')
logger.error('Error occurred')
3. IPython Debugger
## Install IPython
pip install ipython
## Start interactive debugger
ipython --pdb
Tool |
Purpose |
Key Features |
pudb |
Visual Debugger |
Terminal-based interface |
pylint |
Code Analysis |
Checks coding standards |
pytest |
Testing Framework |
Comprehensive debugging |
Environment Debugging
Checking System Configuration
## Python version
python3 --version
## Installed packages
pip list
## System information
python3 -c "import sys; print(sys.path)"
LabEx Debugging Recommendations
- Use virtual environments
- Implement comprehensive logging
- Leverage interactive debugging tools
- Regularly update debugging tools
Advanced Debugging Techniques
Remote Debugging
## Remote debugging setup
import rpdb
rpdb.set_trace()
## Install profiling tools
pip install memory_profiler
## Profile memory usage
python3 -m memory_profiler script.py
Best Practices
- Isolate issues in small, reproducible examples
- Use version control
- Document debugging steps
- Learn from error messages
By mastering these debugging tools, you'll efficiently resolve Python environment and code challenges in LabEx learning platform.