Benchmarking Prime Number Algorithms
Time Complexity Analysis
import timeit
import sys
def basic_prime_check(n):
if n < 2:
return False
for i in range(2, n):
if n % i == 0:
return False
return True
def optimized_prime_check(n):
if n < 2:
return False
for i in range(2, int(n**0.5) + 1):
if n % i == 0:
return False
return True
graph TD
A[Prime Checking Performance] --> B[Input Size]
A --> C[Algorithm Efficiency]
B --> D[Small Numbers]
B --> E[Large Numbers]
C --> F[Time Complexity]
C --> G[Space Complexity]
Benchmarking Methods
def benchmark_prime_methods():
test_numbers = [10, 100, 1000, 10000]
results = []
for num in test_numbers:
basic_time = timeit.timeit(lambda: basic_prime_check(num), number=1000)
optimized_time = timeit.timeit(lambda: optimized_prime_check(num), number=1000)
results.append({
'Number': num,
'Basic Method Time': basic_time,
'Optimized Method Time': optimized_time,
'Improvement (%)': ((basic_time - optimized_time) / basic_time) * 100
})
return results
## Print benchmarking results
for result in benchmark_prime_methods():
print(result)
Optimization Strategies
Strategy |
Description |
Performance Impact |
Square Root Limit |
Check divisors up to โn |
Significant speedup |
Early Termination |
Stop checking on first divisor |
Reduces unnecessary iterations |
Caching |
Store previously computed prime results |
Reduces redundant calculations |
Advanced Optimization Techniques
def cached_prime_check():
## Implement memoization for prime checking
cache = {}
def is_prime(n):
if n in cache:
return cache[n]
if n < 2:
cache[n] = False
return False
for i in range(2, int(n**0.5) + 1):
if n % i == 0:
cache[n] = False
return False
cache[n] = True
return True
return is_prime
## Create cached prime checker
prime_checker = cached_prime_check()
Memory Optimization
def memory_efficient_prime_generator(limit):
## Use generator for memory-efficient prime generation
def is_prime(n):
if n < 2:
return False
for i in range(2, int(n**0.5) + 1):
if n % i == 0:
return False
return True
return (num for num in range(2, limit) if is_prime(num))
## Example usage
primes = list(memory_efficient_prime_generator(100))
print(primes)
Key Optimization Principles
- Reduce unnecessary computations
- Use efficient algorithms
- Implement caching mechanisms
- Consider input size and complexity
At LabEx, we emphasize the importance of algorithmic efficiency in prime number checking.
- Time Complexity
- Space Complexity
- Scalability
- Computational Overhead
Conclusion
Effective prime number checking requires a balanced approach between algorithmic efficiency and practical implementation.