Error Detection
Understanding Runtime Errors in Decorators
Runtime errors in decorators can occur at different stages of function execution. Detecting these errors is crucial for maintaining robust and reliable code.
Common Error Detection Scenarios
graph TD
A[Decorator Error Detection] --> B[Function Definition Errors]
A --> C[Function Execution Errors]
A --> D[Argument Validation Errors]
Error Detection Techniques
1. Basic Error Tracing
def error_detector(func):
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
print(f"Error in {func.__name__}: {type(e).__name__}")
print(f"Error details: {str(e)}")
raise
return wrapper
@error_detector
def divide_numbers(a, b):
return a / b
## Example usage
try:
result = divide_numbers(10, 0)
except ZeroDivisionError:
print("Caught zero division error")
2. Comprehensive Error Logging
import logging
logging.basicConfig(level=logging.ERROR)
def comprehensive_error_detector(func):
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except TypeError:
logging.error(f"Type error in {func.__name__}")
except ValueError:
logging.error(f"Value error in {func.__name__}")
except Exception as e:
logging.error(f"Unexpected error in {func.__name__}: {e}")
return wrapper
Error Detection Strategies
Strategy |
Description |
Use Case |
Try-Except Wrapping |
Catch and handle specific exceptions |
Controlled error management |
Logging |
Record error details |
Debugging and monitoring |
Custom Error Handling |
Define specific error responses |
Advanced error management |
Advanced Error Detection
def advanced_error_detector(expected_types=None):
def decorator(func):
def wrapper(*args, **kwargs):
## Validate input types
if expected_types:
for arg, expected_type in zip(args, expected_types):
if not isinstance(arg, expected_type):
raise TypeError(f"Expected {expected_type}, got {type(arg)}")
## Execute function with error tracking
try:
result = func(*args, **kwargs)
return result
except Exception as e:
print(f"Error in LabEx function {func.__name__}: {e}")
raise
return wrapper
return decorator
@advanced_error_detector(expected_types=[int, int])
def complex_calculation(x, y):
return x / y
Key Considerations
- Always provide meaningful error messages
- Use specific exception handling
- Log errors for debugging purposes
- Consider the performance impact of error detection
By implementing these error detection techniques, you can create more robust and reliable decorator implementations in your Python projects.