Contour Plotting Unstructured Triangular Grids

PythonPythonBeginner
Practice Now

This tutorial is from open-source community. Access the source code

Introduction

Contour plots are a way to represent three-dimensional data on a two-dimensional plane. In this tutorial, we will learn how to create contour plots of unstructured triangular grids using matplotlib and numpy.

VM Tips

After the VM startup is done, click the top left corner to switch to the Notebook tab to access Jupyter Notebook for practice.

Sometimes, you may need to wait a few seconds for Jupyter Notebook to finish loading. The validation of operations cannot be automated because of limitations in Jupyter Notebook.

If you face issues during learning, feel free to ask Labby. Provide feedback after the session, and we will promptly resolve the problem for you.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL matplotlib(("`Matplotlib`")) -.-> matplotlib/PlotCustomizationGroup(["`Plot Customization`"]) python(("`Python`")) -.-> python/BasicConceptsGroup(["`Basic Concepts`"]) python(("`Python`")) -.-> python/DataStructuresGroup(["`Data Structures`"]) matplotlib/PlotCustomizationGroup -.-> matplotlib/line_styles_colors("`Customizing Line Styles and Colors`") matplotlib/PlotCustomizationGroup -.-> matplotlib/legend_config("`Legend Configuration`") python/BasicConceptsGroup -.-> python/booleans("`Booleans`") python/DataStructuresGroup -.-> python/lists("`Lists`") python/DataStructuresGroup -.-> python/tuples("`Tuples`") python/DataStructuresGroup -.-> python/dictionaries("`Dictionaries`") subgraph Lab Skills matplotlib/line_styles_colors -.-> lab-49002{{"`Contour Plotting Unstructured Triangular Grids`"}} matplotlib/legend_config -.-> lab-49002{{"`Contour Plotting Unstructured Triangular Grids`"}} python/booleans -.-> lab-49002{{"`Contour Plotting Unstructured Triangular Grids`"}} python/lists -.-> lab-49002{{"`Contour Plotting Unstructured Triangular Grids`"}} python/tuples -.-> lab-49002{{"`Contour Plotting Unstructured Triangular Grids`"}} python/dictionaries -.-> lab-49002{{"`Contour Plotting Unstructured Triangular Grids`"}} end

Create the Data

First, we will create the x and y coordinates of the points, as well as the z values. We will use the np.linspace function to create evenly spaced arrays of values.

n_angles = 48
n_radii = 8
min_radius = 0.25
radii = np.linspace(min_radius, 0.95, n_radii)

angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
angles[:, 1::2] += np.pi / n_angles

x = (radii * np.cos(angles)).flatten()
y = (radii * np.sin(angles)).flatten()
z = (np.cos(radii) * np.cos(3 * angles)).flatten()

Create the Triangulation

We will create the triangulation using matplotlib.tri.Triangulation. We do not need to specify the triangles, so the Delaunay triangulation of the points will be created automatically.

triang = tri.Triangulation(x, y)

Mask off unwanted triangles

We will use the set_mask method to mask off unwanted triangles.

triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1),
                         y[triang.triangles].mean(axis=1))
                < min_radius)

Create a pcolor plot

We will create a pcolor plot using ax.tricontourf and fig.colorbar.

fig1, ax1 = plt.subplots()
ax1.set_aspect('equal')
tcf = ax1.tricontourf(triang, z)
fig1.colorbar(tcf)
ax1.tricontour(triang, z, colors='k')
ax1.set_title('Contour plot of Delaunay triangulation')

Create a hatched contour plot

We can create a hatched contour plot by specifying the hatches parameter in ax.tricontourf. We can also use a different colormap by specifying the cmap parameter.

fig2, ax2 = plt.subplots()
ax2.set_aspect("equal")
tcf = ax2.tricontourf(
    triang,
    z,
    hatches=["*", "-", "/", "//", "\\", None],
    cmap="cividis"
)
fig2.colorbar(tcf)
ax2.tricontour(triang, z, linestyles="solid", colors="k", linewidths=2.0)
ax2.set_title("Hatched Contour plot of Delaunay triangulation")

Generate hatching patterns labeled with no color

We can generate hatching patterns labeled with no color by specifying the colors parameter as "none" in ax.tricontourf. We can also create a legend for the contour set using ContourSet.legend_elements.

fig3, ax3 = plt.subplots()
n_levels = 7
tcf = ax3.tricontourf(
    triang,
    z,
    n_levels,
    colors="none",
    hatches=[".", "/", "\\", None, "\\\\", "*"],
)
ax3.tricontour(triang, z, n_levels, colors="black", linestyles="-")

artists, labels = tcf.legend_elements(str_format="{:2.1f}".format)
ax3.legend(artists, labels, handleheight=2, framealpha=1)

Create a user-specified triangulation

We can create a user-specified triangulation using the x, y, and triangles arrays. We can then create a contour plot using ax.tricontourf.

xy = np.asarray([
    [-0.101, 0.872], [-0.080, 0.883], [-0.069, 0.888], [-0.054, 0.890],
    [-0.045, 0.897], [-0.057, 0.895], [-0.073, 0.900], [-0.087, 0.898],
    [-0.090, 0.904], [-0.069, 0.907], [-0.069, 0.921], [-0.080, 0.919],
    [-0.073, 0.928], [-0.052, 0.930], [-0.048, 0.942], [-0.062, 0.949],
    [-0.054, 0.958], [-0.069, 0.954], [-0.087, 0.952], [-0.087, 0.959],
    [-0.080, 0.966], [-0.085, 0.973], [-0.087, 0.965], [-0.097, 0.965],
    [-0.097, 0.975], [-0.092, 0.984], [-0.101, 0.980], [-0.108, 0.980],
    [-0.104, 0.987], [-0.102, 0.993], [-0.115, 1.001], [-0.099, 0.996],
    [-0.101, 1.007], [-0.090, 1.010], [-0.087, 1.021], [-0.069, 1.021],
    [-0.052, 1.022], [-0.052, 1.017], [-0.069, 1.010], [-0.064, 1.005],
    [-0.048, 1.005], [-0.031, 1.005], [-0.031, 0.996], [-0.040, 0.987],
    [-0.045, 0.980], [-0.052, 0.975], [-0.040, 0.973], [-0.026, 0.968],
    [-0.020, 0.954], [-0.006, 0.947], [ 0.003, 0.935], [ 0.006, 0.926],
    [ 0.005, 0.921], [ 0.022, 0.923], [ 0.033, 0.912], [ 0.029, 0.905],
    [ 0.017, 0.900], [ 0.012, 0.895], [ 0.027, 0.893], [ 0.019, 0.886],
    [ 0.001, 0.883], [-0.012, 0.884], [-0.029, 0.883], [-0.038, 0.879],
    [-0.057, 0.881], [-0.062, 0.876], [-0.078, 0.876], [-0.087, 0.872],
    [-0.030, 0.907], [-0.007, 0.905], [-0.057, 0.916], [-0.025, 0.933],
    [-0.077, 0.990], [-0.059, 0.993]])
x = np.degrees(xy[:, 0])
y = np.degrees(xy[:, 1])
x0 = -5
y0 = 52
z = np.exp(-0.01 * ((x - x0) ** 2 + (y - y0) ** 2))

triangles = np.asarray([
    [67, 66,  1], [65,  2, 66], [ 1, 66,  2], [64,  2, 65], [63,  3, 64],
    [60, 59, 57], [ 2, 64,  3], [ 3, 63,  4], [ 0, 67,  1], [62,  4, 63],
    [57, 59, 56], [59, 58, 56], [61, 60, 69], [57, 69, 60], [ 4, 62, 68],
    [ 6,  5,  9], [61, 68, 62], [69, 68, 61], [ 9,  5, 70], [ 6,  8,  7],
    [ 4, 70,  5], [ 8,  6,  9], [56, 69, 57], [69, 56, 52], [70, 10,  9],
    [54, 53, 55], [56, 55, 53], [68, 70,  4], [52, 56, 53], [11, 10, 12],
    [69, 71, 68], [68, 13, 70], [10, 70, 13], [51, 50, 52], [13, 68, 71],
    [52, 71, 69], [12, 10, 13], [71, 52, 50], [71, 14, 13], [50, 49, 71],
    [49, 48, 71], [14, 16, 15], [14, 71, 48], [17, 19, 18], [17, 20, 19],
    [48, 16, 14], [48, 47, 16], [47, 46, 16], [16, 46, 45], [23, 22, 24],
    [21, 24, 22], [17, 16, 45], [20, 17, 45], [21, 25, 24], [27, 26, 28],
    [20, 72, 21], [25, 21, 72], [45, 72, 20], [25, 28, 26], [44, 73, 45],
    [72, 45, 73], [28, 25, 29], [29, 25, 31], [43, 73, 44], [73, 43, 40],
    [72, 73, 39], [72, 31, 25], [42, 40, 43], [31, 30, 29], [39, 73, 40],
    [42, 41, 40], [72, 33, 31], [32, 31, 33], [39, 38, 72], [33, 72, 38],
    [33, 38, 34], [37, 35, 38], [34, 38, 35], [35, 37, 36]])

fig4, ax4 = plt.subplots()
ax4.set_aspect('equal')
tcf = ax4.tricontourf(x, y, triangles, z)
fig4.colorbar(tcf)
ax4.set_title('Contour plot of user-specified triangulation')
ax4.set_xlabel('Longitude (degrees)')
ax4.set_ylabel('Latitude (degrees)')```

Show the plots

Finally, we will show all the plots using plt.show().

plt.show()

Summary

In this lab, we learned how to create contour plots of unstructured triangular grids using matplotlib and numpy. We created a Delaunay triangulation of the points, masked off unwanted triangles, created a pcolor plot, a hatched contour plot, and a user-specified triangulation contour plot. We also learned how to add a colorbar and a legend to the plots.

Other Python Tutorials you may like