Indexing Techniques
graph TD
A[Numeric Column Indexing] --> B[Primary Key Indexing]
A --> C[Selective Indexing]
B --> D[Faster Lookups]
C --> E[Reduced Overhead]
Index Creation Example
-- Efficient Indexing
CREATE TABLE product_sales (
id INT UNSIGNED PRIMARY KEY,
product_id INT,
sales_volume BIGINT,
INDEX idx_sales_volume (sales_volume)
);
Memory Optimization Techniques
Column Type Compression
Optimization Strategy |
Impact |
Example |
Use Smallest Type |
Reduce Memory |
TINYINT vs INT |
UNSIGNED Types |
More Positive Range |
product_id UNSIGNED |
Compressed Numeric Types |
Lower Storage |
Bit-packed integers |
Numeric Column Query Optimization
-- Inefficient Query
SELECT * FROM large_table
WHERE big_numeric_column > 1000000;
-- Optimized Query
SELECT * FROM large_table
WHERE big_numeric_column BETWEEN 1000000 AND 2000000
LIMIT 1000;
Indexing Strategies
graph TD
A[Numeric Column Indexing] --> B[Clustered Index]
A --> C[Non-Clustered Index]
B --> D[Primary Key]
C --> E[Secondary Indexes]
Benchmarking and Profiling
Tool |
Purpose |
MySQL Compatibility |
EXPLAIN |
Query Execution Plan |
High |
Performance Schema |
Detailed Metrics |
High |
MySQLTuner |
System Recommendations |
High |
Advanced Optimization Techniques
Numeric Column Optimization Checklist
- Choose Appropriate Data Types
- Use Smallest Possible Type
- Create Selective Indexes
- Avoid Unnecessary Conversions
- Use UNSIGNED When Possible
In LabEx MySQL environments, always measure and compare performance before and after optimization.
Practical Optimization Example
-- Before Optimization
CREATE TABLE user_analytics (
id INT,
total_views BIGINT,
total_clicks BIGINT
);
-- After Optimization
CREATE TABLE user_analytics (
id INT UNSIGNED PRIMARY KEY,
total_views MEDIUMINT UNSIGNED,
total_clicks MEDIUMINT UNSIGNED,
INDEX idx_total_views (total_views)
);
Numeric Computation Optimization
graph TD
A[Numeric Computation] --> B[In-Database Calculations]
A --> C[Pre-Computed Values]
B --> D[Real-Time Processing]
C --> E[Faster Retrieval]
- Query Execution Time
- Index Utilization
- Memory Consumption
- Storage Efficiency
- Scalability
Conclusion
Effective numeric column optimization requires a holistic approach combining type selection, indexing, and continuous performance monitoring.