Best Practices
graph LR
A[Metadata Schema] --> B[Consistent Structure]
B --> C[Predictable Fields]
B --> D[Flexible Extensions]
metadata_template = {
'createdAt': datetime,
'updatedAt': datetime,
'version': float,
'status': str,
'lastModifiedBy': str,
'tags': list
}
Strategy |
Description |
Impact |
Indexing |
Create indexes on metadata fields |
Query Performance |
Compact Storage |
Minimize metadata overhead |
Storage Efficiency |
Selective Tracking |
Track only essential metadata |
System Performance |
class MetadataManager:
@staticmethod
def generate_metadata(user=None):
return {
'createdAt': datetime.utcnow(),
'updatedAt': datetime.utcnow(),
'version': 1.0,
'createdBy': user or 'system',
'status': 'active'
}
def update_document(self, collection, document_id, update_data):
return collection.update_one(
{'_id': document_id},
{
'$set': update_data,
'$inc': {'metadata.version': 0.1},
'$currentDate': {'metadata.updatedAt': True}
}
)
4. Version Control Strategies
graph TD
A[Document Update] --> B{Version Check}
B --> |Version Allowed| C[Update Document]
B --> |Conflict| D[Reject Update]
Security and Compliance
- Implement role-based metadata access
- Encrypt sensitive metadata
- Implement audit logging
- Validate metadata inputs
LabEx Recommended Workflow
def create_document_with_comprehensive_metadata(collection, document_data, user):
metadata = {
'metadata': {
'createdAt': datetime.utcnow(),
'updatedAt': datetime.utcnow(),
'version': 1.0,
'createdBy': user,
'status': 'draft',
'tags': [],
'systemInfo': {
'hostname': platform.node(),
'environment': 'production'
}
}
}
document = {**document_data, **metadata}
return collection.insert_one(document)
def validate_metadata(metadata):
required_fields = ['createdAt', 'updatedAt', 'version']
return all(field in metadata for field in required_fields)
Key Takeaways
- Maintain consistent metadata structure
- Optimize performance
- Implement robust version control
- Ensure metadata security
- Use automated metadata generation
By following these best practices, developers can create robust, efficient, and maintainable metadata tracking systems in MongoDB with LabEx's recommended approaches.