Using Matplotlib's Step and Plot Functions

MatplotlibMatplotlibBeginner
Practice Now

This tutorial is from open-source community. Access the source code

Introduction

Matplotlib is a plotting library for the Python programming language and its numerical mathematics extension NumPy. It provides an object-oriented API for embedding plots into applications using general-purpose GUI toolkits like Tkinter, wxPython, Qt, or GTK. Matplotlib was originally developed by John D. Hunter in 2003.

This tutorial will guide you on how to use the .step() and .plot() functions in Matplotlib.

VM Tips

After the VM startup is done, click the top left corner to switch to the Notebook tab to access Jupyter Notebook for practice.

Sometimes, you may need to wait a few seconds for Jupyter Notebook to finish loading. The validation of operations cannot be automated because of limitations in Jupyter Notebook.

If you face issues during learning, feel free to ask Labby. Provide feedback after the session, and we will promptly resolve the problem for you.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL matplotlib(("`Matplotlib`")) -.-> matplotlib/BasicConceptsGroup(["`Basic Concepts`"]) matplotlib(("`Matplotlib`")) -.-> matplotlib/PlottingDataGroup(["`Plotting Data`"]) matplotlib(("`Matplotlib`")) -.-> matplotlib/PlotCustomizationGroup(["`Plot Customization`"]) python(("`Python`")) -.-> python/DataStructuresGroup(["`Data Structures`"]) python(("`Python`")) -.-> python/ModulesandPackagesGroup(["`Modules and Packages`"]) python(("`Python`")) -.-> python/DataScienceandMachineLearningGroup(["`Data Science and Machine Learning`"]) matplotlib/BasicConceptsGroup -.-> matplotlib/importing_matplotlib("`Importing Matplotlib`") matplotlib/BasicConceptsGroup -.-> matplotlib/figures_axes("`Understanding Figures and Axes`") matplotlib/PlottingDataGroup -.-> matplotlib/line_plots("`Line Plots`") matplotlib/PlotCustomizationGroup -.-> matplotlib/legend_config("`Legend Configuration`") python/DataStructuresGroup -.-> python/tuples("`Tuples`") python/ModulesandPackagesGroup -.-> python/importing_modules("`Importing Modules`") python/DataScienceandMachineLearningGroup -.-> python/numerical_computing("`Numerical Computing`") python/DataScienceandMachineLearningGroup -.-> python/data_visualization("`Data Visualization`") subgraph Lab Skills matplotlib/importing_matplotlib -.-> lab-48960{{"`Using Matplotlib's Step and Plot Functions`"}} matplotlib/figures_axes -.-> lab-48960{{"`Using Matplotlib's Step and Plot Functions`"}} matplotlib/line_plots -.-> lab-48960{{"`Using Matplotlib's Step and Plot Functions`"}} matplotlib/legend_config -.-> lab-48960{{"`Using Matplotlib's Step and Plot Functions`"}} python/tuples -.-> lab-48960{{"`Using Matplotlib's Step and Plot Functions`"}} python/importing_modules -.-> lab-48960{{"`Using Matplotlib's Step and Plot Functions`"}} python/numerical_computing -.-> lab-48960{{"`Using Matplotlib's Step and Plot Functions`"}} python/data_visualization -.-> lab-48960{{"`Using Matplotlib's Step and Plot Functions`"}} end

Import necessary libraries

First, we need to import the necessary libraries, which are matplotlib.pyplot and numpy.

import matplotlib.pyplot as plt
import numpy as np

Create data for the plot

Next, let's create some data that we will use to plot. We will use the numpy.arange() function to create an array of values from 0 to 14 and store it in the variable x. We will also use the numpy.sin() function to create an array of values that are the sine of each value in x divided by 2, and store it in the variable y.

x = np.arange(14)
y = np.sin(x / 2)

Plot using .step()

We can use the .step() function to create piece-wise constant curves. The where parameter determines where the steps should be drawn. We will create three plots using different values for where.

plt.step(x, y + 2, label='pre (default)', where='pre')
plt.step(x, y + 1, label='mid', where='mid')
plt.step(x, y, label='post', where='post')
plt.legend()
plt.show()

The above code will create a plot with three piece-wise constant curves, each with a different value for where.

Plot using .plot()

We can achieve the same behavior as .step() by using the drawstyle parameter of the .plot() function. We will create three plots using different values for drawstyle.

plt.plot(x, y + 2, drawstyle='steps', label='steps (=steps-pre)')
plt.plot(x, y + 1, drawstyle='steps-mid', label='steps-mid')
plt.plot(x, y, drawstyle='steps-post', label='steps-post')
plt.legend()
plt.show()

The above code will create a plot with three piece-wise constant curves, each with a different value for drawstyle.

Summary

In this tutorial, we learned how to use the .step() and .plot() functions in Matplotlib to create piece-wise constant curves. We also learned how to use the where and drawstyle parameters to determine where the steps should be drawn.

Other Matplotlib Tutorials you may like