Practical Implementation
Real-World Text Normalization Scenarios
Batch File Processing
#!/bin/bash
## Batch text normalization script
INPUT_DIR="/path/to/input/files"
OUTPUT_DIR="/path/to/normalized/files"
## Create output directory if not exists
mkdir -p "$OUTPUT_DIR"
## Process all text files
for file in "$INPUT_DIR"/*.txt; do
filename=$(basename "$file")
normalized_file="$OUTPUT_DIR/$filename"
## Comprehensive normalization
iconv -f ISO-8859-1 -t UTF-8 "$file" | \
dos2unix | \
sed 's/[[:space:]]*$//' | \
tr -s ' ' > "$normalized_file"
done
Normalization Workflow
graph TD
A[Source Files] --> B[Detect Formats]
B --> C[Select Normalization Method]
C --> D[Apply Transformations]
D --> E[Validate Output]
E --> F[Archive/Store]
Normalization Strategy Selection
Scenario |
Recommended Approach |
Mixed Encoding |
Multi-step conversion |
Large Files |
Stream-based processing |
Consistent Format |
Lightweight normalization |
Advanced Normalization Techniques
Regular Expression-Based Normalization
#!/usr/bin/env python3
import re
def normalize_text(text):
## Remove extra whitespaces
text = re.sub(r'\s+', ' ', text)
## Normalize punctuation
text = re.sub(r'\s*([.,!?])\s*', r'\1 ', text)
## Trim leading/trailing whitespaces
text = text.strip()
return text
## Example usage
input_text = " Hello, world! How are you? "
normalized_text = normalize_text(input_text)
print(normalized_text)
Handling Large Files
## Stream-based processing for large files
split -l 10000 large_input.txt input_chunk_
for chunk in input_chunk_*; do
normalize_chunk "$chunk" > "normalized_$chunk"
done
Error Handling and Logging
#!/bin/bash
LOG_FILE="/var/log/text_normalization.log"
normalize_with_logging() {
local input_file=$1
local output_file=$2
## Normalization with error capture
if ! iconv -f ISO-8859-1 -t UTF-8 "$input_file" > "$output_file" 2>> "$LOG_FILE"; then
echo "Error processing $input_file" >> "$LOG_FILE"
return 1
fi
}
Best Practices
At LabEx, we recommend:
- Always validate normalized output
- Implement comprehensive error handling
- Use incremental normalization for large datasets
Normalization Complexity
graph LR
A[Simple Normalization] --> B[Medium Complexity]
B --> C[Advanced Transformation]
C --> D[Complex Multi-Stage Processing]
Conclusion
Effective text normalization requires:
- Understanding source formats
- Choosing appropriate techniques
- Implementing robust processing strategies