Rust Lifetime and Trait Bounds

RustRustBeginner
Practice Now

This tutorial is from open-source community. Access the source code

Introduction

In this lab, we learn about bounds in Rust, which are used to restrict the lifetimes or traits of generic types. The : character is used to indicate that all references in a type must outlive a certain lifetime, while + is used to indicate that a type must implement a trait and all references in it must outlive a certain lifetime. An example code snippet demonstrates the syntax and usage of bounds in Rust.

Note: If the lab does not specify a file name, you can use any file name you want. For example, you can use main.rs, compile and run it with rustc main.rs && ./main.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL rust(("`Rust`")) -.-> rust/BasicConceptsGroup(["`Basic Concepts`"]) rust(("`Rust`")) -.-> rust/FunctionsandClosuresGroup(["`Functions and Closures`"]) rust(("`Rust`")) -.-> rust/AdvancedTopicsGroup(["`Advanced Topics`"]) rust/BasicConceptsGroup -.-> rust/variable_declarations("`Variable Declarations`") rust/FunctionsandClosuresGroup -.-> rust/function_syntax("`Function Syntax`") rust/FunctionsandClosuresGroup -.-> rust/expressions_statements("`Expressions and Statements`") rust/AdvancedTopicsGroup -.-> rust/operator_overloading("`Traits for Operator Overloading`") subgraph Lab Skills rust/variable_declarations -.-> lab-99209{{"`Rust Lifetime and Trait Bounds`"}} rust/function_syntax -.-> lab-99209{{"`Rust Lifetime and Trait Bounds`"}} rust/expressions_statements -.-> lab-99209{{"`Rust Lifetime and Trait Bounds`"}} rust/operator_overloading -.-> lab-99209{{"`Rust Lifetime and Trait Bounds`"}} end

Bounds

Just like generic types can be bounded, lifetimes (themselves generic) use bounds as well. The : character has a slightly different meaning here, but + is the same. Note how the following read:

  1. T: 'a: All references in T must outlive lifetime 'a.
  2. T: Trait + 'a: Type T must implement trait Trait and all references in T must outlive 'a.

The example below shows the above syntax in action used after keyword where:

use std::fmt::Debug; // Trait to bound with.

#[derive(Debug)]
struct Ref<'a, T: 'a>(&'a T);
// `Ref` contains a reference to a generic type `T` that has
// an unknown lifetime `'a`. `T` is bounded such that any
// *references* in `T` must outlive `'a`. Additionally, the lifetime
// of `Ref` may not exceed `'a`.

// A generic function which prints using the `Debug` trait.
fn print<T>(t: T) where
    T: Debug {
    println!("`print`: t is {:?}", t);
}

// Here a reference to `T` is taken where `T` implements
// `Debug` and all *references* in `T` outlive `'a`. In
// addition, `'a` must outlive the function.
fn print_ref<'a, T>(t: &'a T) where
    T: Debug + 'a {
    println!("`print_ref`: t is {:?}", t);
}

fn main() {
    let x = 7;
    let ref_x = Ref(&x);

    print_ref(&ref_x);
    print(ref_x);
}

Summary

Congratulations! You have completed the Bounds lab. You can practice more labs in LabEx to improve your skills.

Other Rust Tutorials you may like