Pandas DataFrame Kurt Method

PythonPythonBeginner
Practice Now

Introduction

The DataFrame.kurt() method in Python pandas is used to calculate the kurtosis of a DataFrame. Kurtosis is a statistical measure that describes the shape of a distribution. It measures whether the data is heavy-tailed or light-tailed compared to a normal distribution. A positive kurtosis value indicates a heavy-tailed distribution, while a negative kurtosis value indicates a light-tailed distribution.

VM Tips

After the VM startup is done, click the top left corner to switch to the Notebook tab to access Jupyter Notebook for practice.

Sometimes, you may need to wait a few seconds for Jupyter Notebook to finish loading. The validation of operations cannot be automated because of limitations in Jupyter Notebook.

If you face issues during learning, feel free to ask Labby. Provide feedback after the session, and we will promptly resolve the problem for you.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL python(("`Python`")) -.-> python/DataStructuresGroup(["`Data Structures`"]) python(("`Python`")) -.-> python/ModulesandPackagesGroup(["`Modules and Packages`"]) python(("`Python`")) -.-> python/DataScienceandMachineLearningGroup(["`Data Science and Machine Learning`"]) python(("`Python`")) -.-> python/FunctionsGroup(["`Functions`"]) python/DataStructuresGroup -.-> python/lists("`Lists`") python/DataStructuresGroup -.-> python/tuples("`Tuples`") python/DataStructuresGroup -.-> python/dictionaries("`Dictionaries`") python/ModulesandPackagesGroup -.-> python/importing_modules("`Importing Modules`") python/DataScienceandMachineLearningGroup -.-> python/numerical_computing("`Numerical Computing`") python/DataScienceandMachineLearningGroup -.-> python/data_analysis("`Data Analysis`") python/FunctionsGroup -.-> python/build_in_functions("`Build-in Functions`") subgraph Lab Skills python/lists -.-> lab-68647{{"`Pandas DataFrame Kurt Method`"}} python/tuples -.-> lab-68647{{"`Pandas DataFrame Kurt Method`"}} python/dictionaries -.-> lab-68647{{"`Pandas DataFrame Kurt Method`"}} python/importing_modules -.-> lab-68647{{"`Pandas DataFrame Kurt Method`"}} python/numerical_computing -.-> lab-68647{{"`Pandas DataFrame Kurt Method`"}} python/data_analysis -.-> lab-68647{{"`Pandas DataFrame Kurt Method`"}} python/build_in_functions -.-> lab-68647{{"`Pandas DataFrame Kurt Method`"}} end

Import the necessary libraries

To use the DataFrame.kurt() method, we first need to import the pandas library.

import pandas as pd

Create a DataFrame

We will create a DataFrame that contains some numerical data.

df = pd.DataFrame({"A": [55, 60, 74, 50], "B": [30, 55, 40, 47], "C": [12, 55, 44, 66]})

Apply the DataFrame.kurt() method

To calculate the kurtosis of the DataFrame, we can use the DataFrame.kurt() method. By default, the method calculates the kurtosis for each column.

kurtosis = df.kurt()

Print the result

Finally, we can print the kurtosis values for each column.

print(kurtosis)

Summary

In this lab, we learned how to use the DataFrame.kurt() method in Python pandas to calculate the kurtosis of a DataFrame. By following the steps, we were able to import the necessary libraries, create a DataFrame, apply the method, and print the result. The kurtosis values provide insights into the shape of the data distribution and can be used for statistical analysis.

Other Python Tutorials you may like