Numpy Decode Function

PythonPythonBeginner
Practice Now

Introduction

NumPy is a powerful Python library used for working with arrays, mathematical functions, etc. It provides a large quantity of functions to perform operations on arrays, matrices, etc. In this lab, we will be focusing on decode() function of the NumPy's char module. This function is used to decode strings in an element-wise manner based on the codec specified.

VM Tips

After the VM startup is done, click the top left corner to switch to the Notebook tab to access Jupyter Notebook for practice.

Sometimes, you may need to wait a few seconds for Jupyter Notebook to finish loading. The validation of operations cannot be automated because of limitations in Jupyter Notebook.

If you face issues during learning, feel free to ask Labby. Provide feedback after the session, and we will promptly resolve the problem for you.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL python(("`Python`")) -.-> python/DataStructuresGroup(["`Data Structures`"]) python(("`Python`")) -.-> python/ModulesandPackagesGroup(["`Modules and Packages`"]) python(("`Python`")) -.-> python/DataScienceandMachineLearningGroup(["`Data Science and Machine Learning`"]) python(("`Python`")) -.-> python/FunctionsGroup(["`Functions`"]) numpy(("`NumPy`")) -.-> numpy/ArrayBasicsGroup(["`Array Basics`"]) numpy(("`NumPy`")) -.-> numpy/IndexingandSlicingGroup(["`Indexing and Slicing`"]) python/DataStructuresGroup -.-> python/lists("`Lists`") python/DataStructuresGroup -.-> python/tuples("`Tuples`") python/ModulesandPackagesGroup -.-> python/importing_modules("`Importing Modules`") python/DataScienceandMachineLearningGroup -.-> python/numerical_computing("`Numerical Computing`") python/FunctionsGroup -.-> python/build_in_functions("`Build-in Functions`") numpy/ArrayBasicsGroup -.-> numpy/1d_array("`1D Array Creation`") numpy/ArrayBasicsGroup -.-> numpy/data_array("`Data to Array`") numpy/IndexingandSlicingGroup -.-> numpy/bool_idx("`Boolean Indexing`") numpy/IndexingandSlicingGroup -.-> numpy/fancy_idx("`Fancy Indexing`") subgraph Lab Skills python/lists -.-> lab-86427{{"`Numpy Decode Function`"}} python/tuples -.-> lab-86427{{"`Numpy Decode Function`"}} python/importing_modules -.-> lab-86427{{"`Numpy Decode Function`"}} python/numerical_computing -.-> lab-86427{{"`Numpy Decode Function`"}} python/build_in_functions -.-> lab-86427{{"`Numpy Decode Function`"}} numpy/1d_array -.-> lab-86427{{"`Numpy Decode Function`"}} numpy/data_array -.-> lab-86427{{"`Numpy Decode Function`"}} numpy/bool_idx -.-> lab-86427{{"`Numpy Decode Function`"}} numpy/fancy_idx -.-> lab-86427{{"`Numpy Decode Function`"}} end

Importing NumPy library

NumPy is a third-party module, so before using it we need to import it into our code.

import numpy as np

Creating array

In this step, we will create a simple array of strings to work with.

x = np.array(['aAaAaArt', '  aABbV ', 'abBABba'])

Encoding the array

In this step, we will encode the above-created array using char.encode().

e = np.char.encode(x, encoding='cp500')

Decoding the encoded array

In this step, we will decode the encoded array using char.decode().

d = np.char.decode(e, encoding='cp500')

Displaying the decoded output

In this step, we will print the decoded output to the console to see whether the decoding is working fine or not.

print(d)

Summary

In this lab, we learned how to use the decode() function of the NumPy's char module to decode strings in an element-wise manner based on the codec specified. We have covered all the required steps involved in the process and the way to display the decoded output. Understanding this function is important as it can be very helpful while performing certain complex tasks.

Other Python Tutorials you may like