Error Handling
Understanding Error Types in String Validation
## Potential error scenarios
try:
## Type conversion errors
value = int("not a number")
except ValueError as e:
print(f"Conversion Error: {e}")
## Attribute errors
try:
123.upper() ## Non-string method call
except AttributeError as e:
print(f"Attribute Error: {e}")
Error Handling Strategies
1. Try-Except Block
def safe_string_conversion(value):
try:
## Attempt type conversion
result = str(value)
return result
except Exception as e:
print(f"Conversion failed: {e}")
return None
2. Custom Exception Handling
class StringValidationError(Exception):
"""Custom exception for string validation"""
pass
def strict_string_validator(value):
if not isinstance(value, str):
raise StringValidationError(f"Expected string, got {type(value)}")
return value
Error Handling Workflow
graph TD
A[Input Value] --> B{Is Valid String?}
B -->|Yes| C[Process String]
B -->|No| D{Handle Error}
D -->|Log| E[Log Error]
D -->|Convert| F[Type Conversion]
D -->|Reject| G[Raise Exception]
Error Handling Techniques
Technique |
Description |
Use Case |
Try-Except |
Catch and handle specific errors |
Safe conversion |
Custom Exceptions |
Create domain-specific errors |
Precise error management |
Logging |
Record error details |
Debugging and monitoring |
Fallback Values |
Provide default responses |
Graceful error recovery |
Advanced Error Handling Pattern
import logging
def robust_string_processor(value, default=''):
try:
## Attempt primary conversion
if not isinstance(value, str):
value = str(value)
## Additional validation
if not value.strip():
raise ValueError("Empty string not allowed")
return value.strip()
except ValueError as ve:
logging.warning(f"Validation error: {ve}")
return default
except Exception as e:
logging.error(f"Unexpected error: {e}")
return default
Logging Configuration
import logging
## Configure logging for LabEx application
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s: %(message)s'
)
Best Practices
- Use specific exception types
- Provide meaningful error messages
- Log errors for debugging
- Implement graceful error recovery
- Use type hints and annotations
Error Propagation vs. Handling
def error_handling_example(value):
## Option 1: Propagate error
if not isinstance(value, str):
raise TypeError("Invalid string type")
## Option 2: Soft handling
try:
return value.upper()
except AttributeError:
return None
By implementing comprehensive error handling, developers can create more resilient and reliable Python applications, ensuring smooth string type validation and processing.