Validating Function Arguments with Decorators
Validating function arguments is a common task in Python programming. Decorators can be used to add argument validation logic to functions, ensuring that the input data meets the expected requirements.
Implementing Argument Validation Decorators
Here's an example of a decorator that validates the arguments of a function:
def validate_args(*validators):
def decorator(func):
def wrapper(*args, **kwargs):
for i, validator in enumerate(validators):
if not validator(args[i]):
raise ValueError(f"Invalid argument {i+1}: {args[i]}")
return func(*args, **kwargs)
return wrapper
return decorator
@validate_args(lambda x: isinstance(x, int), lambda x: x > 0)
def divide(a, b):
return a / b
In this example, the validate_args
decorator takes one or more validator functions as arguments. The decorator then creates a new function wrapper
that calls the original function divide
only if all the arguments pass the validation checks.
The validate_args
decorator can be used with any function that takes positional arguments. The number of validator functions passed to validate_args
must match the number of arguments in the decorated function.
Customizing Validation Error Messages
You can also customize the error messages that are raised when the validation fails. Here's an example:
def validate_args(*validators):
def decorator(func):
def wrapper(*args, **kwargs):
for i, (validator, error_msg) in enumerate(validators):
if not validator(args[i]):
raise ValueError(error_msg.format(args[i]))
return func(*args, **kwargs)
return wrapper
return decorator
@validate_args(
(lambda x: isinstance(x, int), "Argument {0} must be an integer"),
(lambda x: x > 0, "Argument {0} must be greater than 0")
)
def divide(a, b):
return a / b
In this example, the validate_args
decorator takes a tuple of a validator function and an error message for each argument. The error message can use the {0}
placeholder to include the value of the invalid argument in the error message.
Handling Keyword Arguments
Decorators can also be used to validate keyword arguments. Here's an example:
def validate_kwargs(**validators):
def decorator(func):
def wrapper(*args, **kwargs):
for name, validator in validators.items():
if name in kwargs and not validator(kwargs[name]):
raise ValueError(f"Invalid value for argument '{name}': {kwargs[name]}")
return func(*args, **kwargs)
return wrapper
return decorator
@validate_kwargs(a=lambda x: isinstance(x, int), b=lambda x: x > 0)
def my_function(a, b):
return a / b
In this example, the validate_kwargs
decorator takes a dictionary of validator functions, where the keys are the names of the keyword arguments and the values are the corresponding validator functions. The wrapper
function then checks each keyword argument against the corresponding validator function and raises a ValueError
if the argument is invalid.
By using decorators to validate function arguments, you can ensure that your functions are called with the correct input data, improving the overall robustness and reliability of your code.