Advanced Error Control
Error Handling in Generators
Effective error management is critical for robust generator implementation. This section explores advanced techniques for controlling and handling errors in Python generators.
Exception Propagation
def error_prone_generator():
for i in range(5):
if i == 3:
raise ValueError("Intentional error")
yield i
def safe_generator_consumer():
try:
for value in error_prone_generator():
print(value)
except ValueError as e:
print(f"Caught error: {e}")
Error Handling Strategies
Strategy |
Description |
Use Case |
Try-Except Block |
Catch and handle specific exceptions |
Controlled error management |
Generator Throw |
Inject exceptions into generator |
Dynamic error simulation |
Contextual Error Handling |
Manage complex error scenarios |
Advanced error control |
Generator Exception Injection
def interactive_generator():
try:
x = 0
while True:
try:
x = yield x
except ValueError:
x = 0
except GeneratorExit:
print("Generator closed")
gen = interactive_generator()
next(gen) ## Prime the generator
gen.throw(ValueError) ## Inject an exception
Error Control Workflow
graph TD
A[Generator Execution] --> B{Error Occurs}
B --> |Handled| C[Continue Execution]
B --> |Unhandled| D[Terminate Generator]
C --> E[Resume Generation]
D --> F[Raise Exception]
Comprehensive Error Management
class RobustGenerator:
def __init__(self, data):
self.data = data
self.index = 0
def __iter__(self):
return self
def __next__(self):
try:
if self.index >= len(self.data):
raise StopIteration
value = self.data[self.index]
self.index += 1
if value < 0:
raise ValueError("Negative value detected")
return value
except Exception as e:
print(f"Error in generator: {e}")
raise
## Usage
def process_generator():
try:
gen = RobustGenerator([1, 2, -3, 4, 5])
for item in gen:
print(f"Processing: {item}")
except ValueError as e:
print(f"Caught error: {e}")
Advanced Techniques
Generator Delegation
def main_generator():
try:
yield from sub_generator()
except Exception as e:
print(f"Caught delegated error: {e}")
def sub_generator():
raise RuntimeError("Delegated error")
Best Practices
- Use explicit error handling
- Implement comprehensive exception management
- Provide clear error messages
- Use generator delegation for complex scenarios
LabEx recommends a proactive approach to generator error control, ensuring reliable and predictable code execution.