Practical Use Cases
Configuration Management
def load_config(config_dict):
database_host = config_dict.get('database_host', 'localhost')
database_port = config_dict.get('database_port', 5432)
return {
'host': database_host,
'port': database_port
}
config = {
'database_host': '192.168.1.100',
'debug_mode': True
}
server_config = load_config(config)
students = [
{'name': 'Alice', 'score': 85},
{'name': 'Bob', 'score': 92},
{'name': 'Charlie', 'score': 78}
]
grade_map = {
lambda x: x >= 90: 'A',
lambda x: 80 <= x < 90: 'B',
lambda x: 70 <= x < 80: 'C',
lambda x: x < 70: 'F'
}
def calculate_grades(students):
return {
student['name']: next(
grade for condition, grade in grade_map.items()
if condition(student['score'])
) for student in students
}
student_grades = calculate_grades(students)
print(student_grades)
Caching Mechanism
class Memoize:
def __init__(self, func):
self.cache = {}
self.func = func
def __call__(self, *args):
if args not in self.cache:
self.cache[args] = self.func(*args)
return self.cache[args]
@Memoize
def fibonacci(n):
return n if n < 2 else fibonacci(n-1) + fibonacci(n-2)
Use Case Flow
graph TD
A[Dictionary Use Cases] --> B[Configuration]
A --> C[Data Transformation]
A --> D[Caching]
A --> E[Data Aggregation]
def track_performance(metrics):
return {
key: value
for key, value in metrics.items()
if value > 0
}
performance_data = {
'cpu_usage': 65.5,
'memory_usage': 0,
'disk_io': 22.3
}
active_metrics = track_performance(performance_data)
Dictionary Use Case Comparison
Use Case |
Technique |
Performance |
Complexity |
Config Management |
.get() |
High |
Low |
Data Transformation |
Comprehension |
Moderate |
Medium |
Caching |
Memoization |
High |
High |
Performance Tracking |
Filtering |
High |
Low |
LabEx Learning Strategy
When exploring dictionary use cases in LabEx, focus on understanding how dictionaries can solve real-world problems efficiently and elegantly.
Advanced Techniques
- Dynamic key generation
- Nested dictionary manipulation
- Conditional value retrieval
- Functional programming with dictionaries
Error Handling Patterns
def safe_retrieve(data, *keys):
try:
result = data
for key in keys:
result = result[key]
return result
except (KeyError, TypeError):
return None
complex_data = {
'users': {
'admin': {'permissions': ['read', 'write']}
}
}
admin_permissions = safe_retrieve(complex_data, 'users', 'admin', 'permissions')