Plot Customization
Comprehensive Seaborn Plot Customization
Customization Levels
graph TD
A[Plot Customization] --> B[Color Palette]
A --> C[Style Configuration]
A --> D[Axis Manipulation]
A --> E[Detailed Formatting]
Color Palette Customization
Built-in Palettes
import seaborn as sns
import matplotlib.pyplot as plt
## Color palette selection
sns.set_palette('viridis') ## Predefined palette
sns.scatterplot(data=tips, x='total_bill', y='tip', palette='deep')
Custom Color Palettes
Palette Type |
Description |
Use Case |
Categorical |
Distinct colors |
Categorical data |
Sequential |
Gradient colors |
Continuous data |
Diverging |
Contrasting colors |
Comparative analysis |
Style and Theme Configuration
## Style customization
sns.set_style('whitegrid') ## Background style
sns.set_context('notebook') ## Scale of plot elements
Axis Customization
plt.figure(figsize=(10, 6))
sns.boxplot(data=tips, x='day', y='total_bill')
## Axis label and title customization
plt.title('Bill Distribution by Day', fontsize=15)
plt.xlabel('Day of Week', fontsize=12)
plt.ylabel('Total Bill', fontsize=12)
plt.xticks(rotation=45)
Advanced Customization Techniques
Annotation and Styling
## Adding statistical annotations
sns.regplot(data=tips, x='total_bill', y='tip',
scatter_kws={'alpha':0.5}, ## Transparency
line_kws={'color':'red'}) ## Regression line style
Visualization Workflow
graph TD
A[Raw Data] --> B[Select Plot Type]
B --> C[Choose Color Palette]
C --> D[Set Style/Context]
D --> E[Customize Axes]
E --> F[Add Annotations]
F --> G[Final Visualization]
Customization Parameters
Key Styling Options
Parameter |
Function |
Example |
palette |
Color selection |
'deep', 'muted' |
style |
Plot background |
'whitegrid', 'darkgrid' |
context |
Scale adjustment |
'paper', 'notebook', 'talk' |
LabEx Visualization Pro Tips
- Experiment with different palettes
- Maintain visual consistency
- Use transparency for overlapping data
- Choose readable fonts and sizes
Complex Customization Example
## Comprehensive plot customization
plt.figure(figsize=(12, 7))
sns.violinplot(
data=tips,
x='day',
y='total_bill',
palette='Set2',
inner='quartile', ## Show internal distribution
cut=0 ## Limit violin plot to actual data range
)
plt.title('Bill Distribution Across Days', fontweight='bold')
plt.xlabel('Day of Week', fontStyle='italic')
plt.ylabel('Total Bill Amount', fontStyle='italic')
plt.tight_layout()
plt.show()
Error Prevention
Common Customization Mistakes
- Overcrowding visualizations
- Inappropriate color choices
- Inconsistent styling
- Ignoring data context