Error Handling Techniques
Understanding Error Handling in Type Mismatches
graph TD
A[Error Handling] --> B[Exception Catching]
A --> C[Graceful Degradation]
A --> D[Logging and Reporting]
Basic Exception Handling Strategies
Try-Except Blocks
def safe_type_conversion(value, target_type):
try:
return target_type(value)
except (ValueError, TypeError) as e:
print(f"Conversion Error: {e}")
return None
## Example usage
result1 = safe_type_conversion("123", int) ## Successful
result2 = safe_type_conversion("abc", float) ## Handles error
Error Handling Patterns
Error Type |
Handling Strategy |
Example |
ValueError |
Default Value |
Provide fallback |
TypeError |
Type Checking |
Validate input |
AttributeError |
Conditional Logic |
Check before access |
Advanced Error Handling Techniques
Custom Error Handling
class TypeMismatchError(Exception):
def __init__(self, value, expected_type):
self.value = value
self.expected_type = expected_type
self.message = f"Cannot convert {value} to {expected_type}"
super().__init__(self.message)
def strict_type_conversion(value, target_type):
try:
if not isinstance(value, (int, float, str)):
raise TypeMismatchError(value, target_type)
return target_type(value)
except TypeMismatchError as e:
print(f"Custom Error: {e.message}")
return None
Comprehensive Error Management
Logging Error Scenarios
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def robust_sequence_processing(input_sequence):
processed_items = []
for item in input_sequence:
try:
converted_item = float(item)
processed_items.append(converted_item)
except (ValueError, TypeError) as e:
logger.warning(f"Skipping invalid item: {item}. Error: {e}")
return processed_items
## LabEx Tip: Comprehensive error tracking
mixed_data = [1, '2.5', 'invalid', 4, '5.7']
result = robust_sequence_processing(mixed_data)
print(result) ## [1.0, 2.5, 4.0, 5.7]
Error Handling Best Practices
- Use specific exception types
- Provide meaningful error messages
- Log errors for debugging
- Implement fallback mechanisms
- Avoid silent failures
Defensive Programming Example
def validate_and_process(data_sequence, conversion_func):
def is_valid_type(item):
return isinstance(item, (int, float, str))
validated_data = [item for item in data_sequence if is_valid_type(item)]
try:
processed_result = [conversion_func(item) for item in validated_data]
return processed_result
except Exception as e:
print(f"Processing failed: {e}")
return []
## Usage demonstration
sample_data = [1, '2', 3.14, 'invalid', 5]
result = validate_and_process(sample_data, float)
print(result) ## [1.0, 2.0, 3.14, 5.0]
- Minimize performance overhead
- Use efficient error checking
- Balance between strict validation and flexibility
By implementing these error handling techniques, developers can create more resilient and predictable Python applications, effectively managing type mismatches and unexpected input scenarios.