Best Practices
Designing Effective Function Flags
1. Clarity and Simplicity
## Good Practice
def process_data(data, verbose=False, timeout=30):
pass
## Avoid Complexity
def process_data(data, **kwargs):
verbose = kwargs.get('verbose', False)
timeout = kwargs.get('timeout', 30)
Flag Design Principles
Principle Matrix
Principle |
Description |
Example |
Minimal Complexity |
Keep flags simple |
debug=False |
Clear Purpose |
Each flag has a specific role |
recursive=True |
Default Behavior |
Provide sensible defaults |
timeout=60 |
Type Hinting and Validation
from typing import Optional, Dict, Any
def robust_function(
data: list,
config: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
## Validate input configuration
if config is not None:
validate_config(config)
## Process with optional configuration
return processed_data
Error Handling Strategies
def flag_protected_function(
data: list,
mode: str = 'default'
) -> list:
## Predefined allowed modes
ALLOWED_MODES = {'default', 'strict', 'lenient'}
## Validate mode
if mode not in ALLOWED_MODES:
raise ValueError(f"Invalid mode. Choose from {ALLOWED_MODES}")
## Function logic based on mode
return processed_data
Flag Flow Visualization
graph TD
A[Function Call] --> B{Flag Validation}
B -->|Valid| C[Execute Function]
B -->|Invalid| D[Raise Error]
C --> E[Return Result]
Optimization Techniques
- Minimize flag complexity
- Use type hints
- Implement early validation
- Provide clear documentation
Documentation Patterns
def advanced_data_processor(
data: list,
normalize: bool = False,
filter_threshold: float = 0.5
) -> list:
"""
Process data with optional normalization and filtering.
Args:
data: Input data list
normalize: Whether to normalize data
filter_threshold: Threshold for data filtering
Returns:
Processed data list
"""
## Implementation details
pass
Common Anti-Patterns
What to Avoid
- Excessive flags
- Unclear flag purposes
- Inconsistent flag naming
- Complex flag interactions
LabEx Insight
At LabEx, we recommend a balanced approach to function flags: make them clear, purposeful, and easy to understand.
Advanced Flag Management
Decorator-Based Flag Control
def validate_flags(func):
def wrapper(*args, **kwargs):
## Pre-execution flag validation
validate_input_flags(kwargs)
return func(*args, **kwargs)
return wrapper
@validate_flags
def complex_operation(data, mode='default'):
## Function implementation
pass
Key Takeaways
- Keep flags simple and meaningful
- Provide clear default behaviors
- Implement robust validation
- Use type hints and documentation
- Consider performance implications