Safe Conversion Methods
Comprehensive Conversion Strategy
graph TD
A[Safe Conversion Methods] --> B[Try-Except Handling]
A --> C[Validation Techniques]
A --> D[Type-Specific Converters]
Defensive Conversion Techniques
Basic Error Handling Pattern
def safe_integer_convert(value, default=0):
try:
return int(value)
except (ValueError, TypeError):
print(f"Conversion failed for {value}")
return default
## Usage examples
print(safe_integer_convert("123")) ## Normal conversion
print(safe_integer_convert("abc")) ## Fallback to default
Advanced Conversion Methods
Flexible Type Conversion
def flexible_converter(value, types=[int, float, str]):
for type_func in types:
try:
return type_func(value)
except ValueError:
continue
return None
## Demonstration
print(flexible_converter("42")) ## Converts to int
print(flexible_converter("3.14")) ## Converts to float
print(flexible_converter("hello")) ## Converts to str
Conversion Safety Patterns
Method |
Purpose |
Error Handling |
try-except |
Catch specific errors |
Provides fallback mechanism |
Type checking |
Validate input type |
Prevents inappropriate conversions |
Default values |
Ensure predictable output |
Maintains program flow |
Regular Expression Validation
import re
def validate_numeric_string(value):
if re.match(r'^-?\d+(?:\.\d+)?$', str(value)):
try:
return float(value)
except ValueError:
return None
return None
## Examples
print(validate_numeric_string("123.45")) ## Valid conversion
print(validate_numeric_string("abc")) ## Returns None
Context-Aware Conversion
def context_convert(value, context=None):
conversions = {
'age': lambda x: int(x) if 0 <= int(x) <= 120 else None,
'price': lambda x: float(x) if float(x) >= 0 else None
}
try:
return conversions.get(context, lambda x: x)(value)
except (ValueError, TypeError):
return None
## Usage
print(context_convert("25", context="age"))
print(context_convert("100.50", context="price"))
LabEx Professional Tip
At LabEx, we recommend implementing multi-layered conversion strategies that combine type checking, error handling, and context-aware validation to create robust Python applications.
Best Practices
- Always use try-except blocks
- Implement type validation
- Provide meaningful default values
- Use context-specific conversion logic
- Log conversion failures for debugging