Return Type Patterns
Common Return Type Strategies
Return type patterns help developers design more predictable and flexible functions by implementing consistent approaches to returning values.
Single Value Return
def calculate_square(number: int) -> int:
return number ** 2
def get_username(user_id: int) -> str:
return f"user_{user_id}"
Multiple Value Return
def get_user_info(user_id: int) -> tuple:
return (user_id, "John Doe", 25)
def divide_numbers(a: int, b: int) -> tuple[int, bool]:
if b == 0:
return 0, False
return a // b, True
Conditional Return Patterns
def validate_age(age: int) -> str:
if age < 0:
return "Invalid"
elif age < 18:
return "Minor"
else:
return "Adult"
Return Type Strategies
Pattern |
Description |
Use Case |
Single Type |
Consistent return type |
Simple computations |
Multiple Types |
Flexible return |
Error handling |
Conditional |
Different returns |
Complex logic |
Optional |
Nullable returns |
Potential missing data |
Advanced Return Patterns
from typing import Union, Optional
def process_data(data: list) -> Union[int, str, None]:
if not data:
return None
if all(isinstance(x, int) for x in data):
return sum(data)
return "Mixed data types"
Return Type Flow
graph TD
A[Function Input] --> B{Validation}
B -->|Valid| C[Process Data]
B -->|Invalid| D[Error Handling]
C --> E[Determine Return Type]
D --> F[Return Error/Default]
Best Practices
- Be consistent with return types
- Handle edge cases
- Use type hints effectively
- Implement clear error handling
LabEx recommends adopting these return type patterns to create more robust and maintainable Python code.