Export Techniques
Matplotlib Export Methods
import matplotlib.pyplot as plt
## Create a sample plot
plt.figure(figsize=(8, 6))
plt.plot([1, 2, 3, 4], [1, 4, 2, 3])
## Multiple export options
plt.savefig('plot.png', dpi=300) ## High-resolution PNG
plt.savefig('plot.pdf') ## Vector PDF
plt.savefig('plot.svg') ## Scalable Vector Graphics
plt.savefig('plot.eps') ## Encapsulated PostScript
Advanced Export Techniques
Customizing Export Parameters
Parameter |
Description |
Example Value |
dpi |
Dots per inch |
300 (high quality) |
bbox_inches |
Tight layout |
'tight' |
transparent |
Background transparency |
True/False |
## Advanced export with parameters
plt.savefig('custom_plot.png',
dpi=300,
bbox_inches='tight',
transparent=True)
Interactive Visualization Exports
Plotly Export Methods
import plotly.express as px
## Create interactive plot
fig = px.scatter(x=[1, 2, 3, 4], y=[1, 4, 2, 3])
## Export techniques
fig.write_html('interactive_plot.html')
fig.write_image('plotly_plot.png')
Export Workflow
graph TD
A[Select Visualization Library] --> B[Create Visualization]
B --> C[Choose Export Format]
C --> D[Configure Export Parameters]
D --> E[Save Visualization]
E --> F[Verify Export Quality]
Multiple Library Exports
Seaborn and Matplotlib Integration
import seaborn as sns
import matplotlib.pyplot as plt
## Create Seaborn plot
sns.set_theme(style="whitegrid")
plt.figure(figsize=(10, 6))
sns.scatterplot(x=[1, 2, 3, 4], y=[1, 4, 2, 3])
## Export with Matplotlib
plt.savefig('seaborn_plot.png', dpi=200)
LabEx Pro Tip
At LabEx, we recommend experimenting with different export parameters to find the optimal balance between file size and visual quality.