Parameter Management Techniques
Configuration Management Strategies
Environment Variables
import os
def get_database_config():
return {
'host': os.environ.get('DB_HOST', 'localhost'),
'port': int(os.environ.get('DB_PORT', 5432)),
'username': os.environ.get('DB_USER', 'default_user')
}
Parameter Storage Methods
Method |
Pros |
Cons |
Environment Variables |
Secure, Flexible |
Complex Management |
Configuration Files |
Structured, Readable |
Additional Parsing Required |
Command Line Arguments |
Direct, Immediate |
Limited Complexity |
JSON/YAML Config |
Rich Formatting |
Overhead in Parsing |
Advanced Configuration Techniques
Configuration Hierarchy
graph TD
A[Default Configuration] --> B[Environment Configuration]
B --> C[Command Line Overrides]
Configuration Class Pattern
class ConfigManager:
def __init__(self, default_config=None):
self.config = default_config or {}
def load_from_env(self):
for key, value in os.environ.items():
if key.startswith('APP_'):
config_key = key[4:].lower()
self.config[config_key] = value
def load_from_file(self, filename):
with open(filename, 'r') as f:
file_config = json.load(f)
self.config.update(file_config)
Secure Parameter Handling
Best Practices
- Never hardcode sensitive credentials
- Use secure secret management
- Implement encryption for sensitive data
Dynamic Parameter Validation
def validate_config(config):
required_keys = ['host', 'port', 'username']
for key in required_keys:
if key not in config:
raise ValueError(f"Missing required configuration: {key}")
Dependency Injection Technique
def create_service(config_manager):
database_config = config_manager.get_config('database')
return DatabaseService(database_config)
Complex Configuration Example
class AdvancedConfigManager:
def __init__(self):
self.config_sources = [
self._load_default_config,
self._load_environment_config,
self._load_file_config
]
def get_final_configuration(self):
config = {}
for source in self.config_sources:
config.update(source())
return config
- Minimize configuration parsing overhead
- Cache configuration after initial load
- Use lazy loading techniques
At LabEx, we recommend a multi-layered approach to parameter management that balances flexibility, security, and performance.
Monitoring and Logging
def log_configuration_changes(old_config, new_config):
for key in set(old_config) | set(new_config):
if old_config.get(key) != new_config.get(key):
logging.info(f"Configuration changed: {key}")