Runtime Validation
What is Runtime Validation?
Runtime validation ensures that method signatures are enforced during program execution, catching type-related errors dynamically.
graph TD
A[Runtime Validation] --> B[Type Checking]
A --> C[Parameter Validation]
A --> D[Error Handling]
Implementing Runtime Validation
Manual Type Checking
def validate_user(name: str, age: int) -> dict:
if not isinstance(name, str):
raise TypeError("Name must be a string")
if not isinstance(age, int):
raise TypeError("Age must be an integer")
return {"name": name, "age": age}
Popular Runtime Validation Libraries
Library |
Features |
Complexity |
typeguard |
Comprehensive type checking |
Medium |
pydantic |
Data validation |
High |
enforce |
Simple type enforcement |
Low |
Advanced Validation Techniques
Decorator-based Validation
from functools import wraps
def validate_types(*types, **type_kwargs):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
## Validate input types
for arg, expected_type in zip(args, types):
if not isinstance(arg, expected_type):
raise TypeError(f"Expected {expected_type}, got {type(arg)}")
return func(*args, **kwargs)
return wrapper
return decorator
@validate_types(str, int)
def create_user(name, age):
return {"name": name, "age": age}
Runtime Validation Strategies
- Type checking
- Value range validation
- Custom constraint enforcement
- Error handling
- Runtime validation adds overhead
- Use sparingly in performance-critical code
- Consider static type checking alternatives
Error Handling Example
def process_data(data: list) -> list:
try:
if not isinstance(data, list):
raise TypeError("Input must be a list")
return [x * 2 for x in data]
except TypeError as e:
print(f"Validation error: {e}")
return []
At LabEx, we recommend a balanced approach to runtime validation, combining static type checking with selective runtime checks.