Import Optimization
Import Time Measurement
import timeit
## Measure import time
start_time = timeit.default_timer()
import numpy as np
elapsed = timeit.default_timer() - start_time
print(f"Import time: {elapsed} seconds")
Lazy Import Techniques
Conditional Imports
try:
import ujson as json
except ImportError:
import json
Deferred Imports
def load_heavy_module():
import tensorflow as tf
return tf.keras.models
graph TD
A[Import Optimization] --> B[Selective Imports]
A --> C[Lazy Loading]
A --> D[Caching]
Import Strategies
Strategy |
Description |
Use Case |
Selective Imports |
Import only needed functions |
Reduce memory usage |
Lazy Loading |
Load modules only when required |
Improve startup time |
Module Caching |
Leverage Python's import cache |
Minimize redundant loads |
Advanced Import Techniques
Using importlib
import importlib
def dynamic_import(module_name):
return importlib.import_module(module_name)
## Dynamically import module
pandas = dynamic_import('pandas')
Import Hooks
import sys
from importlib.abc import MetaPathFinder
class CustomImportHook(MetaPathFinder):
def find_spec(self, fullname, path, target=None):
## Custom import logic
pass
sys.meta_path.append(CustomImportHook())
Using py-spy
## Install py-spy
pip install py-spy
## Profile import performance
py-spy record -o profile.svg python script.py
LabEx Optimization Recommendations
- Use
__all__
to control module exports
- Minimize circular dependencies
- Prefer absolute imports
- Leverage type hints for clarity
Type Hinting Example
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from expensive_module import ExpensiveClass
Memory-Efficient Import Patterns
## Preferred: Specific import
from math import sqrt, pow
## Avoid: Entire module import
import math ## Higher memory overhead
By implementing these optimization strategies, you can significantly improve your Python project's import efficiency, reducing memory consumption and startup time with LabEx's recommended approaches.