Precision Techniques
Advanced Integer Division Strategies
Decimal Module for High-Precision Calculations
The decimal
module provides precise control over numeric calculations:
from decimal import Decimal, getcontext
## Set precision
getcontext().prec = 6
## Precise division
a = Decimal('10')
b = Decimal('3')
result = a / b
print(result) ## Precise result: 3.333333
Rounding Techniques
graph TD
A[Rounding Methods] --> B[round()]
A --> C[math.floor()]
A --> D[math.ceil()]
Method |
Description |
Example |
round() |
Nearest integer |
round(3.6) = 4 |
math.floor() |
Always rounds down |
floor(3.6) = 3 |
math.ceil() |
Always rounds up |
ceil(3.6) = 4 |
Handling Floating-Point Precision
Comparing Floating-Point Numbers
import math
def almost_equal(a, b, tolerance=1e-9):
return math.isclose(a, b, rel_tol=tolerance)
print(almost_equal(0.1 + 0.2, 0.3)) ## True
LabEx Pro Tip: Rational Number Handling
Fractions Module for Exact Representations
from fractions import Fraction
## Precise fractional representation
x = Fraction(1, 3)
y = Fraction(1, 6)
result = x + y
print(result) ## 1/2
Choosing the Right Precision Method
import timeit
## Comparing performance of different methods
def floor_division():
return 10 // 3
def decimal_division():
return Decimal('10') / Decimal('3')
## Benchmark
print(timeit.timeit(floor_division, number=100000))
print(timeit.timeit(decimal_division, number=100000))
Best Practices
- Use
//
for simple integer division
- Use
decimal
for financial calculations
- Use
fractions
for exact rational number representations
- Always handle potential precision issues
Error Handling in Precise Calculations
def safe_division(a, b, precision=2):
try:
result = round(a / b, precision)
return result
except ZeroDivisionError:
return None
except TypeError:
return "Invalid input types"
print(safe_division(10, 3)) ## 3.33
By mastering these precision techniques, you'll be able to handle complex numeric calculations with confidence and accuracy.