Efficient Prime Algorithms
Bitwise Optimization Technique
def bitwise_prime_check(n):
if n <= 1:
return False
if n <= 3:
return True
## Eliminate even numbers quickly
if n % 2 == 0:
return False
## Use bitwise operations for faster checking
for i in range(3, int(n**0.5) + 1, 2):
if n & 1 == 0 or n % i == 0:
return False
return True
Advanced Prime Generation Algorithms
Segmented Sieve Algorithm
def segmented_sieve(limit):
sqrt = int(limit**0.5)
primes = [True] * (sqrt + 1)
## Generate base primes
base_primes = [p for p in range(2, sqrt + 1) if primes[p]]
## Segmented sieve implementation
def generate_segment(low, high):
segment = [True] * (high - low + 1)
for prime in base_primes:
start = max(prime * prime, (low + prime - 1) // prime * prime)
for j in range(start, high + 1, prime):
segment[j - low] = False
return [num for num in range(low, high + 1) if segment[num - low]]
return base_primes
Algorithmic Complexity Comparison
Algorithm |
Time Complexity |
Space Complexity |
Suitable For |
Trial Division |
O(ân) |
O(1) |
Small numbers |
Sieve of Eratosthenes |
O(n log log n) |
O(n) |
Medium range |
Segmented Sieve |
O(n log log n) |
O(ân) |
Large ranges |
Miller-Rabin |
O(k logÂģn) |
O(1) |
Probabilistic testing |
Parallel Prime Computation
graph TD
A[Parallel Prime Computation]
A --> B[Divide Input Range]
A --> C[Distribute Computation]
A --> D[Merge Results]
A --> E[Optimize Performance]
Parallel Processing Example
from multiprocessing import Pool, cpu_count
def is_prime(n):
if n < 2:
return False
for i in range(2, int(n**0.5) + 1):
if n % i == 0:
return False
return True
def parallel_prime_check(numbers):
with Pool(processes=cpu_count()) as pool:
return pool.map(is_prime, numbers)
## Example usage
numbers = range(1, 1000)
prime_results = parallel_prime_check(numbers)
Advanced Primality Testing
def advanced_prime_test(n, k=5):
## Combine multiple techniques
def miller_rabin_pass(a, s, d, n):
x = pow(a, d, n)
if x == 1 or x == n - 1:
return True
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
return True
return False
## Handle small cases
if n <= 1 or n == 4:
return False
if n <= 3:
return True
## Decompose n-1
s, d = 0, n - 1
while d % 2 == 0:
s += 1
d //= 2
## Probabilistic primality test
return all(miller_rabin_pass(a, s, d, n)
for a in [2, 3, 5, 7, 11, 13, 17])
Key Optimization Principles
- Use bitwise operations
- Implement segmented algorithms
- Leverage parallel processing
- Combine multiple testing techniques
LabEx Recommendation
At LabEx, we emphasize understanding the trade-offs between different prime detection algorithms and selecting the most appropriate method based on specific computational requirements.